from model.SCHP import networks from model.SCHP.utils.transforms import get_affine_transform, transform_logits from collections import OrderedDict import torch import numpy as np import cv2 from PIL import Image from torchvision import transforms def get_palette(num_cls): """ Returns the color map for visualizing the segmentation mask. Args: num_cls: Number of classes Returns: The color map """ n = num_cls palette = [0] * (n * 3) for j in range(0, n): lab = j palette[j * 3 + 0] = 0 palette[j * 3 + 1] = 0 palette[j * 3 + 2] = 0 i = 0 while lab: palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i)) palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i)) palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i)) i += 1 lab >>= 3 return palette dataset_settings = { 'lip': { 'input_size': [473, 473], 'num_classes': 20, 'label': ['Background', 'Hat', 'Hair', 'Glove', 'Sunglasses', 'Upper-clothes', 'Dress', 'Coat', 'Socks', 'Pants', 'Jumpsuits', 'Scarf', 'Skirt', 'Face', 'Left-arm', 'Right-arm', 'Left-leg', 'Right-leg', 'Left-shoe', 'Right-shoe'] }, 'atr': { 'input_size': [512, 512], 'num_classes': 18, 'label': ['Background', 'Hat', 'Hair', 'Sunglasses', 'Upper-clothes', 'Skirt', 'Pants', 'Dress', 'Belt', 'Left-shoe', 'Right-shoe', 'Face', 'Left-leg', 'Right-leg', 'Left-arm', 'Right-arm', 'Bag', 'Scarf'] }, 'pascal': { 'input_size': [512, 512], 'num_classes': 7, 'label': ['Background', 'Head', 'Torso', 'Upper Arms', 'Lower Arms', 'Upper Legs', 'Lower Legs'], } } class SCHP: def __init__(self, ckpt_path, device): dataset_type = None if 'lip' in ckpt_path: dataset_type = 'lip' elif 'atr' in ckpt_path: dataset_type = 'atr' elif 'pascal' in ckpt_path: dataset_type = 'pascal' assert dataset_type is not None, 'Dataset type not found in checkpoint path' self.device = device self.num_classes = dataset_settings[dataset_type]['num_classes'] self.input_size = dataset_settings[dataset_type]['input_size'] self.aspect_ratio = self.input_size[1] * 1.0 / self.input_size[0] self.palette = get_palette(self.num_classes) self.label = dataset_settings[dataset_type]['label'] self.model = networks.init_model('resnet101', num_classes=self.num_classes, pretrained=None).to(device) self.load_ckpt(ckpt_path) self.model.eval() self.transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.406, 0.456, 0.485], std=[0.225, 0.224, 0.229]) ]) self.upsample = torch.nn.Upsample(size=self.input_size, mode='bilinear', align_corners=True) def load_ckpt(self, ckpt_path): state_dict = torch.load(ckpt_path, map_location='cpu')['state_dict'] new_state_dict = OrderedDict() for k, v in state_dict.items(): name = k[7:] # remove `module.` new_state_dict[name] = v self.model.load_state_dict(new_state_dict) def _box2cs(self, box): x, y, w, h = box[:4] return self._xywh2cs(x, y, w, h) def _xywh2cs(self, x, y, w, h): center = np.zeros((2), dtype=np.float32) center[0] = x + w * 0.5 center[1] = y + h * 0.5 if w > self.aspect_ratio * h: h = w * 1.0 / self.aspect_ratio elif w < self.aspect_ratio * h: w = h * self.aspect_ratio scale = np.array([w, h], dtype=np.float32) return center, scale def preprocess(self, image): if isinstance(image, str): img = cv2.imread(image, cv2.IMREAD_COLOR) elif isinstance(image, Image.Image): # to cv2 format img = np.array(image) h, w, _ = img.shape # Get person center and scale person_center, s = self._box2cs([0, 0, w - 1, h - 1]) r = 0 trans = get_affine_transform(person_center, s, r, self.input_size) input = cv2.warpAffine( img, trans, (int(self.input_size[1]), int(self.input_size[0])), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=(0, 0, 0)) input = self.transform(input).to(self.device).unsqueeze(0) meta = { 'center': person_center, 'height': h, 'width': w, 'scale': s, 'rotation': r } return input, meta def __call__(self, image_or_path): if isinstance(image_or_path, list): image_list = [] meta_list = [] for image in image_or_path: image, meta = self.preprocess(image) image_list.append(image) meta_list.append(meta) image = torch.cat(image_list, dim=0) else: image, meta = self.preprocess(image_or_path) meta_list = [meta] output = self.model(image) upsample_outputs = self.upsample(output[0][-1]) upsample_outputs = upsample_outputs.permute(0, 2, 3, 1) # BCHW -> BHWC output_img_list = [] for upsample_output, meta in zip(upsample_outputs, meta_list): c, s, w, h = meta['center'], meta['scale'], meta['width'], meta['height'] logits_result = transform_logits(upsample_output.data.cpu().numpy(), c, s, w, h, input_size=self.input_size) parsing_result = np.argmax(logits_result, axis=2) output_img = Image.fromarray(np.asarray(parsing_result, dtype=np.uint8)) output_img.putpalette(self.palette) output_img_list.append(output_img) return output_img_list[0] if len(output_img_list) == 1 else output_img_list