import json from pathlib import Path from typing import Callable, List, Tuple import streamlit as st import yaml st.set_page_config( page_title="HF Dataset Tagging App", page_icon="https://huggingface.co/front/assets/huggingface_logo.svg", layout="wide", initial_sidebar_state="auto", ) task_set = json.load(open("task_set.json")) license_set = json.load(open("license_set.json")) language_set_restricted = json.load(open("language_set.json")) multilinguality_set = { "monolingual": "contains a single language", "multilingual": "contains multiple languages", "translation": "contains translated or aligned text", "other": "other type of language distribution", } creator_set = { "language": [ "found", "crowdsourced", "expert-generated", "machine-generated", "other", ], "annotations": [ "found", "crowdsourced", "expert-generated", "machine-generated", "no-annotation", "other", ], } ######################## ## Helper functions ######################## def load_ds_datas(): metada_exports = sorted( [f for f in Path.cwd().iterdir() if f.name.startswith("metadata_")], key=lambda f: f.lstat().st_mtime, reverse=True, ) if len(metada_exports) == 0: raise ValueError("need to run ./build_metada_file.py at least once") with metada_exports[0].open() as fi: return json.load(fi) def split_known(vals: List[str], okset: List[str]) -> Tuple[List[str], List[str]]: if vals is None: return [], [] return [v for v in vals if v in okset], [v for v in vals if v not in okset] def multiselect( w: st.delta_generator.DeltaGenerator, title: str, markdown: str, values: List[str], valid_set: List[str], format_func: Callable = str, ): valid_values, invalid_values = split_known(values, valid_set) w.markdown( """ #### {title} {errors} """.format( title=title, errors="" if len(invalid_values) == 0 else f"_Found invalid values:_ `{invalid_values}`" ) ) return w.multiselect(markdown, valid_set, default=valid_values, format_func=format_func) def new_state(): return { "task_categories": [], "task_ids": [], "multilinguality": [], "languages": [], "language_creators": [], "annotations_creators": [], "source_datasets": [], "size_categories": [], "licenses": [], } state = new_state() datasets_md = load_ds_datas() existing_tag_sets = {name: mds["metadata"] for name, mds in datasets_md.items()} all_dataset_ids = list(existing_tag_sets.keys()) ######################## ## Dataset selection ######################## st.sidebar.markdown( """ # HuggingFace Dataset Tagger This app aims to make it easier to add structured tags to the datasets present in the library. Each configuration requires its own tasks, as these often correspond to distinct sub-tasks. However, we provide the opportunity to pre-load the tag sets from another dataset or configuration to avoid too much redundancy. The tag sets are saved in JSON format, but you can print a YAML version in the right-most column to copy-paste to the config README.md ### Preloading an existing tag set You can load an existing tag set to get started if you want. Beware that clicking pre-load will overwrite the current state! """ ) qp = st.experimental_get_query_params() preload = qp.get("preload_dataset", list()) preloaded_id = None did_index = 0 if len(preload) == 1 and preload[0] in all_dataset_ids: preloaded_id, *_ = preload state = existing_tag_sets[preloaded_id] or new_state() did_index = all_dataset_ids.index(preloaded_id) did = st.sidebar.selectbox(label="Choose dataset to load tag set from", options=all_dataset_ids, index=did_index) leftbtn, rightbtn = st.sidebar.beta_columns(2) if leftbtn.button("pre-load tagset"): state = existing_tag_sets[did] or new_state() st.experimental_set_query_params(preload_dataset=did) if rightbtn.button("flush state"): state = new_state() st.experimental_set_query_params() if preloaded_id is not None: st.sidebar.markdown( f""" Took [`{preloaded_id}`](https://huggingface.co/datasets/{preloaded_id}) as base tagset: ```yaml {yaml.dump(state)} ``` """ ) leftcol, _, rightcol = st.beta_columns([12, 1, 12]) leftcol.markdown("### Supported tasks") task_categories = multiselect( leftcol, "Task category", "What categories of task does the dataset support?", values=state["task_categories"], valid_set=list(task_set.keys()), format_func=lambda tg: f"{tg}: {task_set[tg]['description']}", ) task_specifics = [] for tg in task_categories: task_specs = multiselect( leftcol, "Specific tasks", f"What specific *{tg}* tasks does the dataset support?", values=[ts for ts in state["task_ids"] if ts in task_set[tg]["options"]], valid_set=task_set[tg]["options"], ) if "other" in task_specs: other_task = st.text_input( "You selected 'other' task. Please enter a short hyphen-separated description for the task:", value="my-task-description", ) st.write(f"Registering {tg}-other-{other_task} task") task_specs[task_specs.index("other")] = f"{tg}-other-{other_task}" task_specifics += task_specs leftcol.markdown("### Languages") multilinguality = multiselect( leftcol, "Monolingual?", "Does the dataset contain more than one language?", values=state["multilinguality"], valid_set=list(multilinguality_set.keys()), format_func=lambda m: f"{m} : {multilinguality_set[m]}", ) if "other" in multilinguality: other_multilinguality = st.text_input( "You selected 'other' type of multilinguality. Please enter a short hyphen-separated description:", value="my-multilinguality", ) st.write(f"Registering other-{other_multilinguality} multilinguality") multilinguality[multilinguality.index("other")] = f"other-{other_multilinguality}" languages = multiselect( leftcol, "Languages", "What languages are represented in the dataset?", values=state["languages"], valid_set=list(language_set_restricted.keys()), format_func=lambda m: f"{m} : {language_set_restricted[m]}", ) leftcol.markdown("### Dataset creators") language_creators = multiselect( leftcol, "Data origin", "Where does the text in the dataset come from?", values=state["language_creators"], valid_set=creator_set["language"], ) annotations_creators = multiselect( leftcol, "Annotations origin", "Where do the annotations in the dataset come from?", values=state["annotations_creators"], valid_set=creator_set["annotations"], ) licenses = multiselect( leftcol, "Licenses", "What licenses is the dataset under?", valid_set=list(license_set.keys()), values=state["licenses"], format_func=lambda l: f"{l} : {license_set[l]}", ) if "other" in licenses: other_license = st.text_input( "You selected 'other' type of license. Please enter a short hyphen-separated description:", value="my-license", ) st.write(f"Registering other-{other_license} license") licenses[licenses.index("other")] = f"other-{other_license}" # link to supported datasets pre_select_ext_a = [] if "original" in state["source_datasets"]: pre_select_ext_a += ["original"] if any([p.startswith("extended") for p in state["source_datasets"]]): pre_select_ext_a += ["extended"] extended = multiselect( leftcol, "Relations to existing work", "Does the dataset contain original data and/or was it extended from other datasets?", values=pre_select_ext_a, valid_set=["original", "extended"], ) source_datasets = ["original"] if "original" in extended else [] # todo: show bad tags if "extended" in extended: pre_select_ext_b = [p.split("|")[1] for p in state["source_datasets"] if p.startswith("extended")] extended_sources = multiselect( leftcol, "Linked datasets", "Which other datasets does this one use data from?", values=pre_select_ext_b, valid_set=all_dataset_ids + ["other"], ) if "other" in extended_sources: other_extended_sources = st.text_input( "You selected 'other' dataset. Please enter a short hyphen-separated description:", value="my-dataset", ) st.write(f"Registering other-{other_extended_sources} dataset") extended_sources[extended_sources.index("other")] = f"other-{other_extended_sources}" source_datasets += [f"extended|{src}" for src in extended_sources] size_cats = ["unknown", "n<1K", "1K1M"] current_size_cats = state.get("size_categories") or ["unknown"] ok, nonok = split_known(current_size_cats, size_cats) if len(nonok) > 0: leftcol.markdown(f"**Found bad codes in existing tagset**:\n{nonok}") size_category = leftcol.selectbox( "What is the size category of the dataset?", options=size_cats, index=size_cats.index(ok[0]) if len(ok) > 0 else 0, ) ######################## ## Show results ######################## yamlblock = yaml.dump( { "task_categories": task_categories, "task_ids": task_specifics, "multilinguality": multilinguality, "languages": languages, "language_creators": language_creators, "annotations_creators": annotations_creators, "source_datasets": source_datasets, "size_categories": size_category, "licenses": licenses, } ) rightcol.markdown( f""" ### Finalized tag set Copy it into your dataset's `README.md` header! 🤗 ```yaml {yamlblock} ```""", )