File size: 4,658 Bytes
059d8f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import requests
import json
import pandas as pd
from tqdm.auto import tqdm

import gradio as gr
#import streamlit as st
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load
#import streamlit.components.v1 as components

# Based on Omar Sanseviero work
# Make model clickable link
def make_clickable_model(model_name):
    link = "https://huggingface.co/" + model_name
    return f'<a target="_blank" href="{link}">{model_name}</a>'

# Make user clickable link
def make_clickable_user(user_id):
    link = "https://huggingface.co/" + user_id
    return f'<a target="_blank" href="{link}">{user_id}</a>'
    
def get_model_ids(rl_env):
    api = HfApi()
    models = api.list_models(filter=rl_env)
    model_ids = [x.modelId for x in models]
    return model_ids
    
def get_metadata(model_id):
    try:
        readme_path = hf_hub_download(model_id, filename="README.md")
        return metadata_load(readme_path)
    except requests.exceptions.HTTPError:
        # 404 README.md not found
        return None
        
def parse_metrics_accuracy(meta):
    if "model-index" not in meta:
        return None
    result = meta["model-index"][0]["results"]
    metrics = result[0]["metrics"]
    accuracy = metrics[0]["value"]
    print("ACCURACY", accuracy)
    return accuracy

# We keep the worst case episode
def parse_rewards(accuracy):
    if accuracy !=  None:
        parsed = accuracy.split(' +/- ')
        mean_reward = float(parsed[0])
        std_reward =  float(parsed[1])
    else:
        mean_reward = -1000
        std_reward = -1000
    return mean_reward, std_reward

def get_data(rl_env):
    data = []
    model_ids = get_model_ids(rl_env)
    for model_id in tqdm(model_ids):
        meta = get_metadata(model_id)
        if meta is None:
            continue
        user_id = model_id.split('/')[0]
        row = {}
        row["User"] = user_id
        row["Model"] = model_id
        accuracy = parse_metrics_accuracy(meta)
        print("RETURNED ACCURACY", accuracy)
        mean_reward, std_reward = parse_rewards(accuracy)
        print("MEAN REWARD", mean_reward)
        row["Results"] = mean_reward - std_reward
        row["Mean Reward"] = mean_reward
        row["Std Reward"] = std_reward
        data.append(row)
    return pd.DataFrame.from_records(data)


def get_data_per_env(rl_env):
    dataframe = get_data(rl_env)
    dataframe = dataframe.fillna("")

    #import pdb; pdb.set_trace()
    if not dataframe.empty:
        # turn the model ids into clickable links
        dataframe["User"] = dataframe["User"].apply(make_clickable_user)
        dataframe["Model"] = dataframe["Model"].apply(make_clickable_model)
        dataframe = dataframe.sort_values(by=['Results'], ascending=False)
        table_html = dataframe.to_html(escape=False, index=False)
        table_html = table_html.replace("<th>", '<th align="left">')  # left-align the headers
        return table_html,dataframe,dataframe.empty
    else: 
        html = """<div style="color: green">
                <p> βŒ› Please wait. Results will be out soon... </p>
                </div>
               """
        return html,dataframe,dataframe.empty   



RL_ENVS = ['CarRacing-v0','MountainCar-v0','LunarLander-v2']
RL_DETAILS ={'CarRacing-v0':{'title':" The Car Racing πŸŒ• Leaderboard πŸš€",'data':get_data_per_env('CarRacing-v0')},
            'MountainCar-v0':{'title':"The Mountain Car πŸŒ• Leaderboard πŸš€",'data':get_data_per_env('MountainCar-v0')},
            'LunarLander-v2':{'title':" The Lunar Lander πŸŒ• Leaderboard πŸš€",'data':get_data_per_env('LunarLander-v2')}
            }


block = gr.Blocks()
with block:
    
    with gr.Tabs():
        for rl_env in RL_ENVS:
            with gr.TabItem(rl_env):
                data_html,data_dataframe,is_empty = RL_DETAILS[rl_env]['data'] 
                
                markdown = """
                # {name_leaderboard}

                This is a leaderboard of {len_dataframe}** agents playing {env_name} πŸ‘©β€πŸš€.

                We use lower bound result to sort the models: mean_reward - std_reward.

                You can click on the model's name to be redirected to its model card which includes documentation.

                You want to try your model? Read this Unit 1 of Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/blob/Unit1/unit1/README.md.

                """.format(len_dataframe = len(data_dataframe),env_name = rl_env,name_leaderboard =  RL_DETAILS[rl_env]['title'])
                gr.Markdown(markdown)
                gr.HTML(data_html)
            

block.launch()