Spaces:
Running
Running
Add openai embeddings (#915)
Browse files* Add OpenAI embedding compatibility
* Use OPENAI_API_KEY by default
* lint
* Add default OpenAI URL
replace `authorization` by `apiKey`
* Add a note in readme
---------
Co-authored-by: Nathan Sarrazin <[email protected]>
README.md
CHANGED
@@ -120,7 +120,7 @@ TEXT_EMBEDDING_MODELS = `[
|
|
120 |
```
|
121 |
|
122 |
The required fields are `name`, `chunkCharLength` and `endpoints`.
|
123 |
-
Supported text embedding backends are: [`transformers.js`](https://huggingface.co/docs/transformers.js)
|
124 |
|
125 |
When more than one embedding models are supplied in `.env.local` file, the first will be used by default, and the others will only be used on LLM's which configured `embeddingModel` to the name of the model.
|
126 |
|
|
|
120 |
```
|
121 |
|
122 |
The required fields are `name`, `chunkCharLength` and `endpoints`.
|
123 |
+
Supported text embedding backends are: [`transformers.js`](https://huggingface.co/docs/transformers.js), [`TEI`](https://github.com/huggingface/text-embeddings-inference) and [`OpenAI`](https://platform.openai.com/docs/guides/embeddings). `transformers.js` models run locally as part of `chat-ui`, whereas `TEI` models run in a different environment & accessed through an API endpoint. `openai` models are accessed through the [OpenAI API](https://platform.openai.com/docs/guides/embeddings).
|
124 |
|
125 |
When more than one embedding models are supplied in `.env.local` file, the first will be used by default, and the others will only be used on LLM's which configured `embeddingModel` to the name of the model.
|
126 |
|
src/lib/server/embeddingEndpoints/embeddingEndpoints.ts
CHANGED
@@ -7,6 +7,10 @@ import {
|
|
7 |
embeddingEndpointTransformersJS,
|
8 |
embeddingEndpointTransformersJSParametersSchema,
|
9 |
} from "./transformersjs/embeddingEndpoints";
|
|
|
|
|
|
|
|
|
10 |
|
11 |
// parameters passed when generating text
|
12 |
interface EmbeddingEndpointParameters {
|
@@ -21,6 +25,7 @@ export type EmbeddingEndpoint = (params: EmbeddingEndpointParameters) => Promise
|
|
21 |
export const embeddingEndpointSchema = z.discriminatedUnion("type", [
|
22 |
embeddingEndpointTeiParametersSchema,
|
23 |
embeddingEndpointTransformersJSParametersSchema,
|
|
|
24 |
]);
|
25 |
|
26 |
type EmbeddingEndpointTypeOptions = z.infer<typeof embeddingEndpointSchema>["type"];
|
@@ -36,6 +41,7 @@ export const embeddingEndpoints: {
|
|
36 |
} = {
|
37 |
tei: embeddingEndpointTei,
|
38 |
transformersjs: embeddingEndpointTransformersJS,
|
|
|
39 |
};
|
40 |
|
41 |
export default embeddingEndpoints;
|
|
|
7 |
embeddingEndpointTransformersJS,
|
8 |
embeddingEndpointTransformersJSParametersSchema,
|
9 |
} from "./transformersjs/embeddingEndpoints";
|
10 |
+
import {
|
11 |
+
embeddingEndpointOpenAI,
|
12 |
+
embeddingEndpointOpenAIParametersSchema,
|
13 |
+
} from "./openai/embeddingEndpoints";
|
14 |
|
15 |
// parameters passed when generating text
|
16 |
interface EmbeddingEndpointParameters {
|
|
|
25 |
export const embeddingEndpointSchema = z.discriminatedUnion("type", [
|
26 |
embeddingEndpointTeiParametersSchema,
|
27 |
embeddingEndpointTransformersJSParametersSchema,
|
28 |
+
embeddingEndpointOpenAIParametersSchema,
|
29 |
]);
|
30 |
|
31 |
type EmbeddingEndpointTypeOptions = z.infer<typeof embeddingEndpointSchema>["type"];
|
|
|
41 |
} = {
|
42 |
tei: embeddingEndpointTei,
|
43 |
transformersjs: embeddingEndpointTransformersJS,
|
44 |
+
openai: embeddingEndpointOpenAI,
|
45 |
};
|
46 |
|
47 |
export default embeddingEndpoints;
|
src/lib/server/embeddingEndpoints/openai/embeddingEndpoints.ts
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import { z } from "zod";
|
2 |
+
import type { EmbeddingEndpoint, Embedding } from "../embeddingEndpoints";
|
3 |
+
import { chunk } from "$lib/utils/chunk";
|
4 |
+
import { OPENAI_API_KEY } from "$env/static/private";
|
5 |
+
|
6 |
+
export const embeddingEndpointOpenAIParametersSchema = z.object({
|
7 |
+
weight: z.number().int().positive().default(1),
|
8 |
+
model: z.any(),
|
9 |
+
type: z.literal("openai"),
|
10 |
+
url: z.string().url().default("https://api.openai.com/v1/embeddings"),
|
11 |
+
apiKey: z.string().default(OPENAI_API_KEY),
|
12 |
+
});
|
13 |
+
|
14 |
+
export async function embeddingEndpointOpenAI(
|
15 |
+
input: z.input<typeof embeddingEndpointOpenAIParametersSchema>
|
16 |
+
): Promise<EmbeddingEndpoint> {
|
17 |
+
const { url, model, apiKey } = embeddingEndpointOpenAIParametersSchema.parse(input);
|
18 |
+
|
19 |
+
const maxBatchSize = model.maxBatchSize || 100;
|
20 |
+
|
21 |
+
return async ({ inputs }) => {
|
22 |
+
const requestURL = new URL(url);
|
23 |
+
|
24 |
+
const batchesInputs = chunk(inputs, maxBatchSize);
|
25 |
+
|
26 |
+
const batchesResults = await Promise.all(
|
27 |
+
batchesInputs.map(async (batchInputs) => {
|
28 |
+
const response = await fetch(requestURL, {
|
29 |
+
method: "POST",
|
30 |
+
headers: {
|
31 |
+
Accept: "application/json",
|
32 |
+
"Content-Type": "application/json",
|
33 |
+
...(apiKey ? { Authorization: `Bearer ${apiKey}` } : {}),
|
34 |
+
},
|
35 |
+
body: JSON.stringify({ input: batchInputs, model: model.name }),
|
36 |
+
});
|
37 |
+
|
38 |
+
const embeddings: Embedding[] = [];
|
39 |
+
const responseObject = await response.json();
|
40 |
+
for (const embeddingObject of responseObject.data) {
|
41 |
+
embeddings.push(embeddingObject.embedding);
|
42 |
+
}
|
43 |
+
return embeddings;
|
44 |
+
})
|
45 |
+
);
|
46 |
+
|
47 |
+
const flatAllEmbeddings = batchesResults.flat();
|
48 |
+
|
49 |
+
return flatAllEmbeddings;
|
50 |
+
};
|
51 |
+
}
|
src/lib/server/embeddingModels.ts
CHANGED
@@ -22,6 +22,7 @@ const modelConfig = z.object({
|
|
22 |
modelUrl: z.string().url().optional(),
|
23 |
endpoints: z.array(embeddingEndpointSchema).nonempty(),
|
24 |
chunkCharLength: z.number().positive(),
|
|
|
25 |
preQuery: z.string().default(""),
|
26 |
prePassage: z.string().default(""),
|
27 |
});
|
@@ -70,6 +71,8 @@ const addEndpoint = (m: Awaited<ReturnType<typeof processEmbeddingModel>>) => ({
|
|
70 |
return embeddingEndpoints.tei(args);
|
71 |
case "transformersjs":
|
72 |
return embeddingEndpoints.transformersjs(args);
|
|
|
|
|
73 |
}
|
74 |
}
|
75 |
|
|
|
22 |
modelUrl: z.string().url().optional(),
|
23 |
endpoints: z.array(embeddingEndpointSchema).nonempty(),
|
24 |
chunkCharLength: z.number().positive(),
|
25 |
+
maxBatchSize: z.number().positive().optional(),
|
26 |
preQuery: z.string().default(""),
|
27 |
prePassage: z.string().default(""),
|
28 |
});
|
|
|
71 |
return embeddingEndpoints.tei(args);
|
72 |
case "transformersjs":
|
73 |
return embeddingEndpoints.transformersjs(args);
|
74 |
+
case "openai":
|
75 |
+
return embeddingEndpoints.openai(args);
|
76 |
}
|
77 |
}
|
78 |
|