Spaces:
Running
Running
Reorder models in HuggingChat (#1060)
Browse files- .env.template +57 -56
.env.template
CHANGED
@@ -109,6 +109,36 @@ MODELS=`[
|
|
109 |
]
|
110 |
},
|
111 |
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
"name" : "google/gemma-1.1-7b-it",
|
113 |
"description": "Gemma 7B 1.1 is the latest release in the Gemma family of lightweight models built by Google, trained using a novel RLHF method.",
|
114 |
"websiteUrl" : "https://blog.google/technology/developers/gemma-open-models/",
|
@@ -135,14 +165,26 @@ MODELS=`[
|
|
135 |
"stop" : ["<end_of_turn>"]
|
136 |
}
|
137 |
},
|
138 |
-
|
139 |
-
|
140 |
-
"
|
141 |
-
"
|
142 |
-
"
|
143 |
-
"
|
144 |
-
"
|
145 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
"promptExamples": [
|
147 |
{
|
148 |
"title": "Write an email from bullet list",
|
@@ -154,25 +196,7 @@ MODELS=`[
|
|
154 |
"title": "Assist in a task",
|
155 |
"prompt": "How do I make a delicious lemon cheesecake?"
|
156 |
}
|
157 |
-
]
|
158 |
-
"parameters": {
|
159 |
-
"temperature": 0.7,
|
160 |
-
"top_p": 0.95,
|
161 |
-
"repetition_penalty": 1,
|
162 |
-
"top_k": 50,
|
163 |
-
"truncate": 24576,
|
164 |
-
"max_new_tokens": 2048,
|
165 |
-
"stop": ["<|im_end|>"]
|
166 |
-
}
|
167 |
-
},
|
168 |
-
{
|
169 |
-
"name": "meta-llama/Meta-Llama-3-8B-Instruct",
|
170 |
-
"tokenizer" : "philschmid/meta-llama-3-tokenizer",
|
171 |
-
"parameters": {
|
172 |
-
"temperature": 0.1,
|
173 |
-
"stop": ["<|eot_id|>"],
|
174 |
-
},
|
175 |
-
"unlisted": true
|
176 |
},
|
177 |
{
|
178 |
"name": "microsoft/Phi-3-mini-4k-instruct",
|
@@ -199,37 +223,14 @@ MODELS=`[
|
|
199 |
}
|
200 |
]
|
201 |
},
|
202 |
-
|
203 |
-
"name": "
|
204 |
-
"
|
205 |
-
"description": "Mistral 7B is a new Apache 2.0 model, released by Mistral AI that outperforms Llama2 13B in benchmarks.",
|
206 |
-
"logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/mistral-logo.png",
|
207 |
-
"websiteUrl": "https://mistral.ai/news/announcing-mistral-7b/",
|
208 |
-
"modelUrl": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2",
|
209 |
-
"tokenizer": "mistralai/Mistral-7B-Instruct-v0.2",
|
210 |
-
"preprompt": "",
|
211 |
-
"chatPromptTemplate" : "<s>{{#each messages}}{{#ifUser}}[INST] {{#if @first}}{{#if @root.preprompt}}{{@root.preprompt}}\n{{/if}}{{/if}}{{content}} [/INST]{{/ifUser}}{{#ifAssistant}}{{content}}</s>{{/ifAssistant}}{{/each}}",
|
212 |
"parameters": {
|
213 |
-
"temperature": 0.
|
214 |
-
"
|
215 |
-
"repetition_penalty": 1.2,
|
216 |
-
"top_k": 50,
|
217 |
-
"truncate": 3072,
|
218 |
-
"max_new_tokens": 1024,
|
219 |
-
"stop": ["</s>"]
|
220 |
},
|
221 |
-
"
|
222 |
-
{
|
223 |
-
"title": "Write an email from bullet list",
|
224 |
-
"prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12)"
|
225 |
-
}, {
|
226 |
-
"title": "Code a snake game",
|
227 |
-
"prompt": "Code a basic snake game in python, give explanations for each step."
|
228 |
-
}, {
|
229 |
-
"title": "Assist in a task",
|
230 |
-
"prompt": "How do I make a delicious lemon cheesecake?"
|
231 |
-
}
|
232 |
-
]
|
233 |
}
|
234 |
]`
|
235 |
|
|
|
109 |
]
|
110 |
},
|
111 |
{
|
112 |
+
"name" : "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
|
113 |
+
"description" : "Nous Hermes 2 Mixtral 8x7B DPO is the new flagship Nous Research model trained over the Mixtral 8x7B MoE LLM.",
|
114 |
+
"logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/nous-logo.png",
|
115 |
+
"websiteUrl" : "https://nousresearch.com/",
|
116 |
+
"modelUrl": "https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
|
117 |
+
"tokenizer": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
|
118 |
+
"chatPromptTemplate" : "{{#if @root.preprompt}}<|im_start|>system\n{{@root.preprompt}}<|im_end|>\n{{/if}}{{#each messages}}{{#ifUser}}<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n{{/ifUser}}{{#ifAssistant}}{{content}}<|im_end|>\n{{/ifAssistant}}{{/each}}",
|
119 |
+
"promptExamples": [
|
120 |
+
{
|
121 |
+
"title": "Write an email from bullet list",
|
122 |
+
"prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12)"
|
123 |
+
}, {
|
124 |
+
"title": "Code a snake game",
|
125 |
+
"prompt": "Code a basic snake game in python, give explanations for each step."
|
126 |
+
}, {
|
127 |
+
"title": "Assist in a task",
|
128 |
+
"prompt": "How do I make a delicious lemon cheesecake?"
|
129 |
+
}
|
130 |
+
],
|
131 |
+
"parameters": {
|
132 |
+
"temperature": 0.7,
|
133 |
+
"top_p": 0.95,
|
134 |
+
"repetition_penalty": 1,
|
135 |
+
"top_k": 50,
|
136 |
+
"truncate": 24576,
|
137 |
+
"max_new_tokens": 2048,
|
138 |
+
"stop": ["<|im_end|>"]
|
139 |
+
}
|
140 |
+
},
|
141 |
+
{
|
142 |
"name" : "google/gemma-1.1-7b-it",
|
143 |
"description": "Gemma 7B 1.1 is the latest release in the Gemma family of lightweight models built by Google, trained using a novel RLHF method.",
|
144 |
"websiteUrl" : "https://blog.google/technology/developers/gemma-open-models/",
|
|
|
165 |
"stop" : ["<end_of_turn>"]
|
166 |
}
|
167 |
},
|
168 |
+
|
169 |
+
{
|
170 |
+
"name": "mistralai/Mistral-7B-Instruct-v0.2",
|
171 |
+
"displayName": "mistralai/Mistral-7B-Instruct-v0.2",
|
172 |
+
"description": "Mistral 7B is a new Apache 2.0 model, released by Mistral AI that outperforms Llama2 13B in benchmarks.",
|
173 |
+
"logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/mistral-logo.png",
|
174 |
+
"websiteUrl": "https://mistral.ai/news/announcing-mistral-7b/",
|
175 |
+
"modelUrl": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2",
|
176 |
+
"tokenizer": "mistralai/Mistral-7B-Instruct-v0.2",
|
177 |
+
"preprompt": "",
|
178 |
+
"chatPromptTemplate" : "<s>{{#each messages}}{{#ifUser}}[INST] {{#if @first}}{{#if @root.preprompt}}{{@root.preprompt}}\n{{/if}}{{/if}}{{content}} [/INST]{{/ifUser}}{{#ifAssistant}}{{content}}</s>{{/ifAssistant}}{{/each}}",
|
179 |
+
"parameters": {
|
180 |
+
"temperature": 0.3,
|
181 |
+
"top_p": 0.95,
|
182 |
+
"repetition_penalty": 1.2,
|
183 |
+
"top_k": 50,
|
184 |
+
"truncate": 3072,
|
185 |
+
"max_new_tokens": 1024,
|
186 |
+
"stop": ["</s>"]
|
187 |
+
},
|
188 |
"promptExamples": [
|
189 |
{
|
190 |
"title": "Write an email from bullet list",
|
|
|
196 |
"title": "Assist in a task",
|
197 |
"prompt": "How do I make a delicious lemon cheesecake?"
|
198 |
}
|
199 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
},
|
201 |
{
|
202 |
"name": "microsoft/Phi-3-mini-4k-instruct",
|
|
|
223 |
}
|
224 |
]
|
225 |
},
|
226 |
+
{
|
227 |
+
"name": "meta-llama/Meta-Llama-3-8B-Instruct",
|
228 |
+
"tokenizer" : "philschmid/meta-llama-3-tokenizer",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
"parameters": {
|
230 |
+
"temperature": 0.1,
|
231 |
+
"stop": ["<|eot_id|>"],
|
|
|
|
|
|
|
|
|
|
|
232 |
},
|
233 |
+
"unlisted": true
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
}
|
235 |
]`
|
236 |
|