{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "fce4ae66-1841-45b4-a0c0-6202287437d4", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/hubsnippet/.local/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", " from .autonotebook import tqdm as notebook_tqdm\n", "None of PyTorch, TensorFlow >= 2.0, or Flax have been found. Models won't be available and only tokenizers, configuration and file/data utilities can be used.\n", "None of PyTorch, TensorFlow >= 2.0, or Flax have been found. Models won't be available and only tokenizers, configuration and file/data utilities can be used.\n" ] } ], "source": [ "from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan\n", "#from datasets import load_dataset\n", "#import torch\n", "import soundfile as sf\n", "#from datasets import load_dataset" ] }, { "cell_type": "code", "execution_count": 2, "id": "2c4a3d90-f2ac-440a-a7ff-011fab098867", "metadata": {}, "outputs": [ { "ename": "ImportError", "evalue": "\nSpeechT5Tokenizer requires the SentencePiece library but it was not found in your environment. Checkout the instructions on the\ninstallation page of its repo: https://github.com/google/sentencepiece#installation and follow the ones\nthat match your environment. Please note that you may need to restart your runtime after installation.\n", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[2], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m processor \u001b[38;5;241m=\u001b[39m \u001b[43mSpeechT5Processor\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pretrained\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmicrosoft/speecht5_tts\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2\u001b[0m model \u001b[38;5;241m=\u001b[39m SpeechT5ForTextToSpeech\u001b[38;5;241m.\u001b[39mfrom_pretrained(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmicrosoft/speecht5_tts\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 3\u001b[0m vocoder \u001b[38;5;241m=\u001b[39m SpeechT5HifiGan\u001b[38;5;241m.\u001b[39mfrom_pretrained(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmicrosoft/speecht5_hifigan\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", "File \u001b[0;32m~/.local/lib/python3.11/site-packages/transformers/processing_utils.py:465\u001b[0m, in \u001b[0;36mProcessorMixin.from_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, cache_dir, force_download, local_files_only, token, revision, **kwargs)\u001b[0m\n\u001b[1;32m 462\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m token \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 463\u001b[0m kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtoken\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m token\n\u001b[0;32m--> 465\u001b[0m args \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_get_arguments_from_pretrained\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpretrained_model_name_or_path\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 466\u001b[0m processor_dict, kwargs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39mget_processor_dict(pretrained_model_name_or_path, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 468\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39mfrom_args_and_dict(args, processor_dict, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n", "File \u001b[0;32m~/.local/lib/python3.11/site-packages/transformers/processing_utils.py:511\u001b[0m, in \u001b[0;36mProcessorMixin._get_arguments_from_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, **kwargs)\u001b[0m\n\u001b[1;32m 508\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 509\u001b[0m attribute_class \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mgetattr\u001b[39m(transformers_module, class_name)\n\u001b[0;32m--> 511\u001b[0m args\u001b[38;5;241m.\u001b[39mappend(\u001b[43mattribute_class\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pretrained\u001b[49m(pretrained_model_name_or_path, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs))\n\u001b[1;32m 512\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m args\n", "File \u001b[0;32m~/.local/lib/python3.11/site-packages/transformers/utils/import_utils.py:1450\u001b[0m, in \u001b[0;36mDummyObject.__getattribute__\u001b[0;34m(cls, key)\u001b[0m\n\u001b[1;32m 1448\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m key\u001b[38;5;241m.\u001b[39mstartswith(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m_\u001b[39m\u001b[38;5;124m\"\u001b[39m) \u001b[38;5;129;01mand\u001b[39;00m key \u001b[38;5;241m!=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m_from_config\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 1449\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28msuper\u001b[39m()\u001b[38;5;241m.\u001b[39m\u001b[38;5;21m__getattribute__\u001b[39m(key)\n\u001b[0;32m-> 1450\u001b[0m \u001b[43mrequires_backends\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mcls\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_backends\u001b[49m\u001b[43m)\u001b[49m\n", "File \u001b[0;32m~/.local/lib/python3.11/site-packages/transformers/utils/import_utils.py:1438\u001b[0m, in \u001b[0;36mrequires_backends\u001b[0;34m(obj, backends)\u001b[0m\n\u001b[1;32m 1436\u001b[0m failed \u001b[38;5;241m=\u001b[39m [msg\u001b[38;5;241m.\u001b[39mformat(name) \u001b[38;5;28;01mfor\u001b[39;00m available, msg \u001b[38;5;129;01min\u001b[39;00m checks \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m available()]\n\u001b[1;32m 1437\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m failed:\n\u001b[0;32m-> 1438\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mImportError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m.\u001b[39mjoin(failed))\n", "\u001b[0;31mImportError\u001b[0m: \nSpeechT5Tokenizer requires the SentencePiece library but it was not found in your environment. Checkout the instructions on the\ninstallation page of its repo: https://github.com/google/sentencepiece#installation and follow the ones\nthat match your environment. Please note that you may need to restart your runtime after installation.\n" ] } ], "source": [ "processor = SpeechT5Processor.from_pretrained(\"microsoft/speecht5_tts\")\n", "model = SpeechT5ForTextToSpeech.from_pretrained(\"microsoft/speecht5_tts\")\n", "vocoder = SpeechT5HifiGan.from_pretrained(\"microsoft/speecht5_hifigan\")\n", "\n", "inputs = processor(text=\"Hello, my dog is cute.\", return_tensors=\"pt\")" ] }, { "cell_type": "code", "execution_count": null, "id": "0fd02046-1a29-4989-9031-4b7d1729a336", "metadata": {}, "outputs": [], "source": [ "# load xvector containing speaker's voice characteristics from a dataset\n", "#embeddings_dataset = load_dataset(\"Matthijs/cmu-arctic-xvectors\", split=\"validation\")\n", "#speaker_embeddings = torch.tensor(embeddings_dataset[7306][\"xvector\"]).unsqueeze(0)\n", "\n", "speech = model.generate_speech(inputs[\"input_ids\"], vocoder=vocoder)\n", "\n", "sf.write(\"speech.wav\", speech.numpy(), samplerate=16000)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.8" } }, "nbformat": 4, "nbformat_minor": 5 }