from flask import Flask, request, jsonify from flask_cors import CORS import torch from transformers import AutoTokenizer, AutoModelForCausalLM import logging import os # Initialize logger logging.basicConfig(level=logging.DEBUG) # Load tokenizer and model logging.info("Loading model...") model_repo = "hsb06/toghetherAi-model" tokenizer = AutoTokenizer.from_pretrained(model_repo) model = AutoModelForCausalLM.from_pretrained(model_repo, torch_dtype=torch.float16).to("cuda" if torch.cuda.is_available() else "cpu") logging.info("Model loaded successfully.") app = Flask(__name__) CORS(app) def generate_response(prompt): inputs = tokenizer(prompt, return_tensors="pt").to(model.device) input_length = inputs.input_ids.shape[1] outputs = model.generate( **inputs, max_new_tokens=256, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True, ) token = outputs.sequences[0, input_length:] full_response = tokenizer.decode(token, skip_special_tokens=True) if "" in full_response: trimmed_response = full_response.split("")[0].strip() else: trimmed_response = full_response.strip() logging.debug(f"Trimmed response: {trimmed_response}") return trimmed_response @app.route("/", methods=["GET"]) def home(): return jsonify({"message": "Flask app is running!"}) @app.route("/chat", methods=["POST"]) def chat(): data = request.json user_input = data.get("message", "") prompt = f": {user_input}\n:" logging.info(f"User input: {user_input}") logging.debug(f"Generated prompt: {prompt}") response = generate_response(prompt) logging.info(f"Generated response: {response}") return jsonify({"response": response}) if __name__ == "__main__": port = int(os.getenv("PORT", 7860)) logging.info(f"Starting Flask app on port {port}") app.run(debug=False, host="0.0.0.0", port=port)