diff --git a/.gitattributes b/.gitattributes
new file mode 100644
index 0000000000000000000000000000000000000000..18a3ddb74a635aeed8f7525284cf6fcfe7e1e23f
--- /dev/null
+++ b/.gitattributes
@@ -0,0 +1,58 @@
+*.7z filter=lfs diff=lfs merge=lfs -text
+*.arrow filter=lfs diff=lfs merge=lfs -text
+*.bin filter=lfs diff=lfs merge=lfs -text
+*.bz2 filter=lfs diff=lfs merge=lfs -text
+*.ckpt filter=lfs diff=lfs merge=lfs -text
+*.ftz filter=lfs diff=lfs merge=lfs -text
+*.gz filter=lfs diff=lfs merge=lfs -text
+*.h5 filter=lfs diff=lfs merge=lfs -text
+*.joblib filter=lfs diff=lfs merge=lfs -text
+*.lfs.* filter=lfs diff=lfs merge=lfs -text
+*.mlmodel filter=lfs diff=lfs merge=lfs -text
+*.model filter=lfs diff=lfs merge=lfs -text
+*.msgpack filter=lfs diff=lfs merge=lfs -text
+*.npy filter=lfs diff=lfs merge=lfs -text
+*.npz filter=lfs diff=lfs merge=lfs -text
+*.onnx filter=lfs diff=lfs merge=lfs -text
+*.ot filter=lfs diff=lfs merge=lfs -text
+*.parquet filter=lfs diff=lfs merge=lfs -text
+*.pb filter=lfs diff=lfs merge=lfs -text
+*.pickle filter=lfs diff=lfs merge=lfs -text
+*.pkl filter=lfs diff=lfs merge=lfs -text
+*.pt filter=lfs diff=lfs merge=lfs -text
+*.pth filter=lfs diff=lfs merge=lfs -text
+*.rar filter=lfs diff=lfs merge=lfs -text
+*.safetensors filter=lfs diff=lfs merge=lfs -text
+saved_model/**/* filter=lfs diff=lfs merge=lfs -text
+*.tar.* filter=lfs diff=lfs merge=lfs -text
+*.tflite filter=lfs diff=lfs merge=lfs -text
+*.tgz filter=lfs diff=lfs merge=lfs -text
+*.wasm filter=lfs diff=lfs merge=lfs -text
+*.xz filter=lfs diff=lfs merge=lfs -text
+*.zip filter=lfs diff=lfs merge=lfs -text
+*.zst filter=lfs diff=lfs merge=lfs -text
+*tfevents* filter=lfs diff=lfs merge=lfs -text
+weights/alice/added_IVF141_Flat_nprobe_4.index filter=lfs diff=lfs merge=lfs -text
+weights/ayaka-jp/added_IVF1830_Flat_nprobe_9.index filter=lfs diff=lfs merge=lfs -text
+weights/nilou-zh/added_IVF1939_Flat_nprobe_9.index filter=lfs diff=lfs merge=lfs -text
+weights/teio/added_IVF3421_Flat_nprobe_11.index filter=lfs diff=lfs merge=lfs -text
+weights/sucrose-jp/added_IVF884_Flat_nprobe_1.index filter=lfs diff=lfs merge=lfs -text
+weights/yanfei-jp/added_IVF1101_Flat_nprobe_1.index filter=lfs diff=lfs merge=lfs -text
+weights/yae-miko/added_IVF929_Flat_nprobe_1.index filter=lfs diff=lfs merge=lfs -text
+weights/eula-en/added_IVF982_Flat_nprobe_1.index filter=lfs diff=lfs merge=lfs -text
+weights/kirara-jp/added_IVF672_Flat_nprobe_1.index filter=lfs diff=lfs merge=lfs -text
+weights/hutao-jp/added_IVF265_Flat_nprobe_5.index filter=lfs diff=lfs merge=lfs -text
+weights/hutao-jp/cover.png filter=lfs diff=lfs merge=lfs -text
+weights/kazuha-jp/added_IVF677_Flat_nprobe_7.index filter=lfs diff=lfs merge=lfs -text
+weights/kazuha-jp/cover.png filter=lfs diff=lfs merge=lfs -text
+weights/alhaitham/added_IVF519_Flat_nprobe_1.index filter=lfs diff=lfs merge=lfs -text
+weights/alhaitham/cover.png filter=lfs diff=lfs merge=lfs -text
+weights/xiao-jp/added_IVF233_Flat_nprobe_5.index filter=lfs diff=lfs merge=lfs -text
+weights/xiao-jp/cover.png filter=lfs diff=lfs merge=lfs -text
+weights/wanderer-jp/added_IVF128_Flat_nprobe_4.index filter=lfs diff=lfs merge=lfs -text
+weights/wanderer-jp/cover.png filter=lfs diff=lfs merge=lfs -text
+weights/eula-jp/added_IVF2219_Flat_nprobe_1.index filter=lfs diff=lfs merge=lfs -text
+weights/ganyu-jp/added_IVF1636_Flat_nprobe_1.index filter=lfs diff=lfs merge=lfs -text
+weights/raiden-jp/added_IVF783_Flat_nprobe_7.index filter=lfs diff=lfs merge=lfs -text
+weights/ayaka-jp/added_IVF823_Flat_nprobe_1.index filter=lfs diff=lfs merge=lfs -text
+weights/lumine-jp/added_IVF1007_Flat_nprobe_1.index filter=lfs diff=lfs merge=lfs -text
diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..fb07aa3eb740e5d6b84172cbf73d2523768269ee
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1,382 @@
+## Ignore Visual Studio temporary files, build results, and
+## files generated by popular Visual Studio add-ons.
+##
+## Get latest from https://github.com/github/gitignore/blob/master/VisualStudio.gitignore
+
+# User-specific files
+*.rsuser
+*.suo
+*.user
+*.userosscache
+*.sln.docstates
+
+# User-specific files (MonoDevelop/Xamarin Studio)
+*.userprefs
+
+# Mono auto generated files
+mono_crash.*
+
+# Build results
+[Dd]ebug/
+[Dd]ebugPublic/
+[Rr]elease/
+[Rr]eleases/
+x64/
+x86/
+[Ww][Ii][Nn]32/
+[Aa][Rr][Mm]/
+[Aa][Rr][Mm]64/
+bld/
+[Bb]in/
+[Oo]bj/
+[Oo]ut/
+[Ll]og/
+[Ll]ogs/
+
+# Visual Studio 2015/2017 cache/options directory
+.vs/
+# Uncomment if you have tasks that create the project's static files in wwwroot
+#wwwroot/
+
+# Visual Studio 2017 auto generated files
+Generated\ Files/
+
+# MSTest test Results
+[Tt]est[Rr]esult*/
+[Bb]uild[Ll]og.*
+
+# NUnit
+*.VisualState.xml
+TestResult.xml
+nunit-*.xml
+
+# Build Results of an ATL Project
+[Dd]ebugPS/
+[Rr]eleasePS/
+dlldata.c
+
+# Benchmark Results
+BenchmarkDotNet.Artifacts/
+
+# .NET Core
+project.lock.json
+project.fragment.lock.json
+artifacts/
+
+# ASP.NET Scaffolding
+ScaffoldingReadMe.txt
+
+# StyleCop
+StyleCopReport.xml
+
+# Files built by Visual Studio
+*_i.c
+*_p.c
+*_h.h
+*.ilk
+*.meta
+*.obj
+*.iobj
+*.pch
+*.pdb
+*.ipdb
+*.pgc
+*.pgd
+*.rsp
+*.sbr
+*.tlb
+*.tli
+*.tlh
+*.tmp
+*.tmp_proj
+*_wpftmp.csproj
+*.log
+*.vspscc
+*.vssscc
+.builds
+*.pidb
+*.svclog
+*.scc
+
+# Chutzpah Test files
+_Chutzpah*
+
+# Visual C++ cache files
+ipch/
+*.aps
+*.ncb
+*.opendb
+*.opensdf
+*.sdf
+*.cachefile
+*.VC.db
+*.VC.VC.opendb
+
+# Visual Studio profiler
+*.psess
+*.vsp
+*.vspx
+*.sap
+
+# Visual Studio Trace Files
+*.e2e
+
+# TFS 2012 Local Workspace
+$tf/
+
+# Guidance Automation Toolkit
+*.gpState
+
+# ReSharper is a .NET coding add-in
+_ReSharper*/
+*.[Rr]e[Ss]harper
+*.DotSettings.user
+
+# TeamCity is a build add-in
+_TeamCity*
+
+# DotCover is a Code Coverage Tool
+*.dotCover
+
+# AxoCover is a Code Coverage Tool
+.axoCover/*
+!.axoCover/settings.json
+
+# Coverlet is a free, cross platform Code Coverage Tool
+coverage*.json
+coverage*.xml
+coverage*.info
+
+# Visual Studio code coverage results
+*.coverage
+*.coveragexml
+
+# NCrunch
+_NCrunch_*
+.*crunch*.local.xml
+nCrunchTemp_*
+
+# MightyMoose
+*.mm.*
+AutoTest.Net/
+
+# Web workbench (sass)
+.sass-cache/
+
+# Installshield output folder
+[Ee]xpress/
+
+# DocProject is a documentation generator add-in
+DocProject/buildhelp/
+DocProject/Help/*.HxT
+DocProject/Help/*.HxC
+DocProject/Help/*.hhc
+DocProject/Help/*.hhk
+DocProject/Help/*.hhp
+DocProject/Help/Html2
+DocProject/Help/html
+
+# Click-Once directory
+publish/
+
+# Publish Web Output
+*.[Pp]ublish.xml
+*.azurePubxml
+# Note: Comment the next line if you want to checkin your web deploy settings,
+# but database connection strings (with potential passwords) will be unencrypted
+*.pubxml
+*.publishproj
+
+# Microsoft Azure Web App publish settings. Comment the next line if you want to
+# checkin your Azure Web App publish settings, but sensitive information contained
+# in these scripts will be unencrypted
+PublishScripts/
+
+# NuGet Packages
+*.nupkg
+# NuGet Symbol Packages
+*.snupkg
+# The packages folder can be ignored because of Package Restore
+**/[Pp]ackages/*
+# except build/, which is used as an MSBuild target.
+!**/[Pp]ackages/build/
+# Uncomment if necessary however generally it will be regenerated when needed
+#!**/[Pp]ackages/repositories.config
+# NuGet v3's project.json files produces more ignorable files
+*.nuget.props
+*.nuget.targets
+
+# Microsoft Azure Build Output
+csx/
+*.build.csdef
+
+# Microsoft Azure Emulator
+ecf/
+rcf/
+
+# Windows Store app package directories and files
+AppPackages/
+BundleArtifacts/
+Package.StoreAssociation.xml
+_pkginfo.txt
+*.appx
+*.appxbundle
+*.appxupload
+
+# Visual Studio cache files
+# files ending in .cache can be ignored
+*.[Cc]ache
+# but keep track of directories ending in .cache
+!?*.[Cc]ache/
+
+# Others
+ClientBin/
+~$*
+*~
+*.dbmdl
+*.dbproj.schemaview
+*.jfm
+*.pfx
+*.publishsettings
+orleans.codegen.cs
+
+# Including strong name files can present a security risk
+# (https://github.com/github/gitignore/pull/2483#issue-259490424)
+#*.snk
+
+# Since there are multiple workflows, uncomment next line to ignore bower_components
+# (https://github.com/github/gitignore/pull/1529#issuecomment-104372622)
+#bower_components/
+
+# RIA/Silverlight projects
+Generated_Code/
+
+# Backup & report files from converting an old project file
+# to a newer Visual Studio version. Backup files are not needed,
+# because we have git ;-)
+_UpgradeReport_Files/
+Backup*/
+UpgradeLog*.XML
+UpgradeLog*.htm
+ServiceFabricBackup/
+*.rptproj.bak
+
+# SQL Server files
+*.mdf
+*.ldf
+*.ndf
+
+# Business Intelligence projects
+*.rdl.data
+*.bim.layout
+*.bim_*.settings
+*.rptproj.rsuser
+*- [Bb]ackup.rdl
+*- [Bb]ackup ([0-9]).rdl
+*- [Bb]ackup ([0-9][0-9]).rdl
+
+# Microsoft Fakes
+FakesAssemblies/
+
+# GhostDoc plugin setting file
+*.GhostDoc.xml
+
+# Node.js Tools for Visual Studio
+.ntvs_analysis.dat
+node_modules/
+
+# Visual Studio 6 build log
+*.plg
+
+# Visual Studio 6 workspace options file
+*.opt
+
+# Visual Studio 6 auto-generated workspace file (contains which files were open etc.)
+*.vbw
+
+# Visual Studio LightSwitch build output
+**/*.HTMLClient/GeneratedArtifacts
+**/*.DesktopClient/GeneratedArtifacts
+**/*.DesktopClient/ModelManifest.xml
+**/*.Server/GeneratedArtifacts
+**/*.Server/ModelManifest.xml
+_Pvt_Extensions
+
+# Paket dependency manager
+.paket/paket.exe
+paket-files/
+
+# FAKE - F# Make
+.fake/
+
+# CodeRush personal settings
+.cr/personal
+
+# Python Tools for Visual Studio (PTVS)
+__pycache__/
+
+
+# Cake - Uncomment if you are using it
+# tools/**
+# !tools/packages.config
+
+# Tabs Studio
+*.tss
+
+# Telerik's JustMock configuration file
+*.jmconfig
+
+# BizTalk build output
+*.btp.cs
+*.btm.cs
+*.odx.cs
+*.xsd.cs
+
+# OpenCover UI analysis results
+OpenCover/
+
+# Azure Stream Analytics local run output
+ASALocalRun/
+
+# MSBuild Binary and Structured Log
+*.binlog
+
+# NVidia Nsight GPU debugger configuration file
+*.nvuser
+
+# MFractors (Xamarin productivity tool) working folder
+.mfractor/
+
+# Local History for Visual Studio
+.localhistory/
+
+# BeatPulse healthcheck temp database
+healthchecksdb
+
+# Backup folder for Package Reference Convert tool in Visual Studio 2017
+MigrationBackup/
+
+# Ionide (cross platform F# VS Code tools) working folder
+.ionide/
+
+# Fody - auto-generated XML schema
+FodyWeavers.xsd
+
+# build
+build
+monotonic_align/core.c
+*.o
+*.so
+*.dll
+
+# data
+/config.json
+/*.pth
+*.wav
+/monotonic_align/monotonic_align
+/resources
+/MoeGoe.spec
+/dist/MoeGoe
+/dist
+
+.idea
\ No newline at end of file
diff --git a/README.md b/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..70213f355334a9b836bef13bc31ee25877d9af9b
--- /dev/null
+++ b/README.md
@@ -0,0 +1,14 @@
+---
+title: Rvc Models
+emoji: 🎤
+colorFrom: red
+colorTo: blue
+sdk: gradio
+sdk_version: 3.27.0
+app_file: app.py
+pinned: false
+license: mit
+duplicated_from: mocci24/rvc-models
+---
+
+Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
diff --git a/app.py b/app.py
new file mode 100644
index 0000000000000000000000000000000000000000..213c2b58f692aca5579a4eebf2c4581cb4012b10
--- /dev/null
+++ b/app.py
@@ -0,0 +1,190 @@
+import os
+import json
+import argparse
+import traceback
+import logging
+import gradio as gr
+import numpy as np
+import librosa
+import torch
+import asyncio
+import edge_tts
+from datetime import datetime
+from fairseq import checkpoint_utils
+from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono
+from vc_infer_pipeline import VC
+from config import (
+ is_half,
+ device
+)
+logging.getLogger("numba").setLevel(logging.WARNING)
+limitation = os.getenv("SYSTEM") == "spaces" # limit audio length in huggingface spaces
+
+def create_vc_fn(tgt_sr, net_g, vc, if_f0, file_index, file_big_npy):
+ def vc_fn(
+ input_audio,
+ f0_up_key,
+ f0_method,
+ index_rate,
+ tts_mode,
+ tts_text,
+ tts_voice
+ ):
+ try:
+ if tts_mode:
+ if len(tts_text) > 100 and limitation:
+ return "Text is too long", None
+ if tts_text is None or tts_voice is None:
+ return "You need to enter text and select a voice", None
+ asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save("tts.mp3"))
+ audio, sr = librosa.load("tts.mp3", sr=16000, mono=True)
+ else:
+ if args.files:
+ audio, sr = librosa.load(input_audio, sr=16000, mono=True)
+ else:
+ if input_audio is None:
+ return "You need to upload an audio", None
+ sampling_rate, audio = input_audio
+ duration = audio.shape[0] / sampling_rate
+ if duration > 20 and limitation:
+ return "Please upload an audio file that is less than 20 seconds. If you need to generate a longer audio file, please use Colab.", None
+ audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
+ if len(audio.shape) > 1:
+ audio = librosa.to_mono(audio.transpose(1, 0))
+ if sampling_rate != 16000:
+ audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
+ times = [0, 0, 0]
+ f0_up_key = int(f0_up_key)
+ audio_opt = vc.pipeline(
+ hubert_model,
+ net_g,
+ 0,
+ audio,
+ times,
+ f0_up_key,
+ f0_method,
+ file_index,
+ file_big_npy,
+ index_rate,
+ if_f0,
+ )
+ print(
+ f"[{datetime.now().strftime('%Y-%m-%d %H:%M')}]: npy: {times[0]}, f0: {times[1]}s, infer: {times[2]}s"
+ )
+ return "Success", (tgt_sr, audio_opt)
+ except:
+ info = traceback.format_exc()
+ print(info)
+ return info, (None, None)
+ return vc_fn
+
+def load_hubert():
+ global hubert_model
+ models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
+ ["hubert_base.pt"],
+ suffix="",
+ )
+ hubert_model = models[0]
+ hubert_model = hubert_model.to(device)
+ if is_half:
+ hubert_model = hubert_model.half()
+ else:
+ hubert_model = hubert_model.float()
+ hubert_model.eval()
+
+def change_to_tts_mode(tts_mode):
+ if tts_mode:
+ return gr.Audio.update(visible=False), gr.Textbox.update(visible=True), gr.Dropdown.update(visible=True)
+ else:
+ return gr.Audio.update(visible=True), gr.Textbox.update(visible=False), gr.Dropdown.update(visible=False)
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--api', action="store_true", default=False)
+ parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
+ parser.add_argument("--files", action="store_true", default=False, help="load audio from path")
+ args, unknown = parser.parse_known_args()
+ load_hubert()
+ models = []
+ tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
+ voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list]
+ with open("weights/model_info.json", "r", encoding="utf-8") as f:
+ models_info = json.load(f)
+ for name, info in models_info.items():
+ if not info['enable']:
+ continue
+ title = info['title']
+ author = info.get("author", None)
+ cover = f"weights/{name}/{info['cover']}"
+ index = f"weights/{name}/{info['feature_retrieval_library']}"
+ npy = f"weights/{name}/{info['feature_file']}"
+ cpt = torch.load(f"weights/{name}/{name}.pth", map_location="cpu")
+ tgt_sr = cpt["config"][-1]
+ cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
+ if_f0 = cpt.get("f0", 1)
+ if if_f0 == 1:
+ net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half)
+ else:
+ net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
+ del net_g.enc_q
+ print(net_g.load_state_dict(cpt["weight"], strict=False)) # 不加这一行清不干净, 真奇葩
+ net_g.eval().to(device)
+ if is_half:
+ net_g = net_g.half()
+ else:
+ net_g = net_g.float()
+ vc = VC(tgt_sr, device, is_half)
+ models.append((name, title, author, cover, create_vc_fn(tgt_sr, net_g, vc, if_f0, index, npy)))
+ with gr.Blocks() as app:
+ gr.Markdown(
+ "#
RVC Models\n"
+ "## The input audio should be clean and pure voice without background music.\n"
+ "### Look Our New [RVC V2 MODELS](https://huggingface.co/spaces/mocci24/rvc-genshin-v2).\n"
+ "\n\n"
+ "[](https://colab.research.google.com/drive/1drpge-VdqzbB5MqtuaeXK04qoo5Ew5hD)\n\n"
+ "[](https://huggingface.co/spaces/mocci24/rvc-models?duplicate=true)\n\n"
+
+ "[](https://ko-fi.com/mocci24)\n\n"
+
+ )
+ with gr.Tabs():
+ for (name, title, author, cover, vc_fn) in models:
+ with gr.TabItem(name):
+ with gr.Row():
+ gr.Markdown(
+ ''
+ f'
{title}
\n'+
+ (f'
Model author: {author}
' if author else "")+
+ (f'

' if cover else "")+
+ '
'
+ )
+ with gr.Row():
+ with gr.Column():
+ if args.files:
+ vc_input = gr.Textbox(label="Input audio path")
+ else:
+ vc_input = gr.Audio(label="Input audio"+' (less than 20 seconds)' if limitation else '')
+ vc_transpose = gr.Number(label="Transpose", value=0)
+ vc_f0method = gr.Radio(
+ label="Pitch extraction algorithm, PM is fast but Harvest is better for low frequencies",
+ choices=["pm", "harvest"],
+ value="pm",
+ interactive=True,
+ )
+ vc_index_ratio = gr.Slider(
+ minimum=0,
+ maximum=1,
+ label="Retrieval feature ratio",
+ value=0.6,
+ interactive=True,
+ )
+ tts_mode = gr.Checkbox(label="tts (use edge-tts as input)", value=False)
+ tts_text = gr.Textbox(visible=False,label="TTS text (100 words limitation)" if limitation else "TTS text")
+ tts_voice = gr.Dropdown(label="Edge-tts speaker", choices=voices, visible=False, allow_custom_value=False, value="en-US-AnaNeural-Female")
+ vc_submit = gr.Button("Generate", variant="primary")
+ with gr.Column():
+ vc_output1 = gr.Textbox(label="Output Message")
+ vc_output2 = gr.Audio(label="Output Audio")
+ vc_submit.click(vc_fn, [vc_input, vc_transpose, vc_f0method, vc_index_ratio, tts_mode, tts_text, tts_voice], [vc_output1, vc_output2])
+ tts_mode.change(change_to_tts_mode, [tts_mode], [vc_input, tts_text, tts_voice])
+ app.queue(concurrency_count=1, max_size=20, api_open=args.api).launch(share=args.share)
\ No newline at end of file
diff --git a/config.py b/config.py
new file mode 100644
index 0000000000000000000000000000000000000000..c0c16e0017efbcaf250cb539a1d0edb4e83575e4
--- /dev/null
+++ b/config.py
@@ -0,0 +1,88 @@
+########################硬件参数########################
+
+# 填写cuda:x, cpu 或 mps, x指代第几张卡,只支持 N卡 / Apple Silicon 加速
+device = "cuda:0"
+
+# 9-10-20-30-40系显卡无脑True,不影响质量,>=20显卡开启有加速
+is_half = True
+
+# 默认0用上所有线程,写数字限制CPU资源使用
+n_cpu = 0
+
+########################硬件参数########################
+
+
+##################下为参数处理逻辑,勿动##################
+
+########################命令行参数########################
+import argparse
+
+parser = argparse.ArgumentParser()
+parser.add_argument("--port", type=int, default=7865, help="Listen port")
+parser.add_argument("--pycmd", type=str, default="python", help="Python command")
+parser.add_argument("--colab", action="store_true", help="Launch in colab")
+parser.add_argument(
+ "--noparallel", action="store_true", help="Disable parallel processing"
+)
+parser.add_argument(
+ "--noautoopen", action="store_true", help="Do not open in browser automatically"
+)
+cmd_opts, unknown = parser.parse_known_args()
+
+python_cmd = cmd_opts.pycmd
+listen_port = cmd_opts.port
+iscolab = cmd_opts.colab
+noparallel = cmd_opts.noparallel
+noautoopen = cmd_opts.noautoopen
+########################命令行参数########################
+
+import sys
+import torch
+
+
+# has_mps is only available in nightly pytorch (for now) and MasOS 12.3+.
+# check `getattr` and try it for compatibility
+def has_mps() -> bool:
+ if sys.platform != "darwin":
+ return False
+ else:
+ if not getattr(torch, "has_mps", False):
+ return False
+ try:
+ torch.zeros(1).to(torch.device("mps"))
+ return True
+ except Exception:
+ return False
+
+
+if not torch.cuda.is_available():
+ if has_mps():
+ print("没有发现支持的N卡, 使用MPS进行推理")
+ device = "mps"
+ else:
+ print("没有发现支持的N卡, 使用CPU进行推理")
+ device = "cpu"
+ is_half = False
+
+if device not in ["cpu", "mps"]:
+ gpu_name = torch.cuda.get_device_name(int(device.split(":")[-1]))
+ if "16" in gpu_name or "MX" in gpu_name:
+ print("16系显卡/MX系显卡强制单精度")
+ is_half = False
+
+from multiprocessing import cpu_count
+
+if n_cpu == 0:
+ n_cpu = cpu_count()
+if is_half:
+ # 6G显存配置
+ x_pad = 3
+ x_query = 10
+ x_center = 60
+ x_max = 65
+else:
+ # 5G显存配置
+ x_pad = 1
+ x_query = 6
+ x_center = 38
+ x_max = 41
diff --git a/hubert_base.pt b/hubert_base.pt
new file mode 100644
index 0000000000000000000000000000000000000000..72f47ab58564f01d5cc8b05c63bdf96d944551ff
--- /dev/null
+++ b/hubert_base.pt
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f54b40fd2802423a5643779c4861af1e9ee9c1564dc9d32f54f20b5ffba7db96
+size 189507909
diff --git a/infer_pack/__pycache__/attentions.cpython-310.pyc b/infer_pack/__pycache__/attentions.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..78b88aa91ae112d626a9b5d0f34cb670c5cec4fb
Binary files /dev/null and b/infer_pack/__pycache__/attentions.cpython-310.pyc differ
diff --git a/infer_pack/__pycache__/commons.cpython-310.pyc b/infer_pack/__pycache__/commons.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..270329c5e85df49163f86dfa76b139737eac0c60
Binary files /dev/null and b/infer_pack/__pycache__/commons.cpython-310.pyc differ
diff --git a/infer_pack/__pycache__/models.cpython-310.pyc b/infer_pack/__pycache__/models.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..1c5802182b85d500a65d3c1f79ac4c65f487bce5
Binary files /dev/null and b/infer_pack/__pycache__/models.cpython-310.pyc differ
diff --git a/infer_pack/__pycache__/modules.cpython-310.pyc b/infer_pack/__pycache__/modules.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..3e00f5729174861800491228a36999a85809f764
Binary files /dev/null and b/infer_pack/__pycache__/modules.cpython-310.pyc differ
diff --git a/infer_pack/__pycache__/transforms.cpython-310.pyc b/infer_pack/__pycache__/transforms.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..56e8940178578f370d9063c0ae00b9b01517c772
Binary files /dev/null and b/infer_pack/__pycache__/transforms.cpython-310.pyc differ
diff --git a/infer_pack/attentions.py b/infer_pack/attentions.py
new file mode 100644
index 0000000000000000000000000000000000000000..77cb63ffccf3e33badf22d50862a64ba517b487f
--- /dev/null
+++ b/infer_pack/attentions.py
@@ -0,0 +1,417 @@
+import copy
+import math
+import numpy as np
+import torch
+from torch import nn
+from torch.nn import functional as F
+
+from infer_pack import commons
+from infer_pack import modules
+from infer_pack.modules import LayerNorm
+
+
+class Encoder(nn.Module):
+ def __init__(
+ self,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size=1,
+ p_dropout=0.0,
+ window_size=10,
+ **kwargs
+ ):
+ super().__init__()
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.window_size = window_size
+
+ self.drop = nn.Dropout(p_dropout)
+ self.attn_layers = nn.ModuleList()
+ self.norm_layers_1 = nn.ModuleList()
+ self.ffn_layers = nn.ModuleList()
+ self.norm_layers_2 = nn.ModuleList()
+ for i in range(self.n_layers):
+ self.attn_layers.append(
+ MultiHeadAttention(
+ hidden_channels,
+ hidden_channels,
+ n_heads,
+ p_dropout=p_dropout,
+ window_size=window_size,
+ )
+ )
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
+ self.ffn_layers.append(
+ FFN(
+ hidden_channels,
+ hidden_channels,
+ filter_channels,
+ kernel_size,
+ p_dropout=p_dropout,
+ )
+ )
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
+
+ def forward(self, x, x_mask):
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
+ x = x * x_mask
+ for i in range(self.n_layers):
+ y = self.attn_layers[i](x, x, attn_mask)
+ y = self.drop(y)
+ x = self.norm_layers_1[i](x + y)
+
+ y = self.ffn_layers[i](x, x_mask)
+ y = self.drop(y)
+ x = self.norm_layers_2[i](x + y)
+ x = x * x_mask
+ return x
+
+
+class Decoder(nn.Module):
+ def __init__(
+ self,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size=1,
+ p_dropout=0.0,
+ proximal_bias=False,
+ proximal_init=True,
+ **kwargs
+ ):
+ super().__init__()
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.proximal_bias = proximal_bias
+ self.proximal_init = proximal_init
+
+ self.drop = nn.Dropout(p_dropout)
+ self.self_attn_layers = nn.ModuleList()
+ self.norm_layers_0 = nn.ModuleList()
+ self.encdec_attn_layers = nn.ModuleList()
+ self.norm_layers_1 = nn.ModuleList()
+ self.ffn_layers = nn.ModuleList()
+ self.norm_layers_2 = nn.ModuleList()
+ for i in range(self.n_layers):
+ self.self_attn_layers.append(
+ MultiHeadAttention(
+ hidden_channels,
+ hidden_channels,
+ n_heads,
+ p_dropout=p_dropout,
+ proximal_bias=proximal_bias,
+ proximal_init=proximal_init,
+ )
+ )
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
+ self.encdec_attn_layers.append(
+ MultiHeadAttention(
+ hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
+ )
+ )
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
+ self.ffn_layers.append(
+ FFN(
+ hidden_channels,
+ hidden_channels,
+ filter_channels,
+ kernel_size,
+ p_dropout=p_dropout,
+ causal=True,
+ )
+ )
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
+
+ def forward(self, x, x_mask, h, h_mask):
+ """
+ x: decoder input
+ h: encoder output
+ """
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
+ device=x.device, dtype=x.dtype
+ )
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
+ x = x * x_mask
+ for i in range(self.n_layers):
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
+ y = self.drop(y)
+ x = self.norm_layers_0[i](x + y)
+
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
+ y = self.drop(y)
+ x = self.norm_layers_1[i](x + y)
+
+ y = self.ffn_layers[i](x, x_mask)
+ y = self.drop(y)
+ x = self.norm_layers_2[i](x + y)
+ x = x * x_mask
+ return x
+
+
+class MultiHeadAttention(nn.Module):
+ def __init__(
+ self,
+ channels,
+ out_channels,
+ n_heads,
+ p_dropout=0.0,
+ window_size=None,
+ heads_share=True,
+ block_length=None,
+ proximal_bias=False,
+ proximal_init=False,
+ ):
+ super().__init__()
+ assert channels % n_heads == 0
+
+ self.channels = channels
+ self.out_channels = out_channels
+ self.n_heads = n_heads
+ self.p_dropout = p_dropout
+ self.window_size = window_size
+ self.heads_share = heads_share
+ self.block_length = block_length
+ self.proximal_bias = proximal_bias
+ self.proximal_init = proximal_init
+ self.attn = None
+
+ self.k_channels = channels // n_heads
+ self.conv_q = nn.Conv1d(channels, channels, 1)
+ self.conv_k = nn.Conv1d(channels, channels, 1)
+ self.conv_v = nn.Conv1d(channels, channels, 1)
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
+ self.drop = nn.Dropout(p_dropout)
+
+ if window_size is not None:
+ n_heads_rel = 1 if heads_share else n_heads
+ rel_stddev = self.k_channels**-0.5
+ self.emb_rel_k = nn.Parameter(
+ torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
+ * rel_stddev
+ )
+ self.emb_rel_v = nn.Parameter(
+ torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
+ * rel_stddev
+ )
+
+ nn.init.xavier_uniform_(self.conv_q.weight)
+ nn.init.xavier_uniform_(self.conv_k.weight)
+ nn.init.xavier_uniform_(self.conv_v.weight)
+ if proximal_init:
+ with torch.no_grad():
+ self.conv_k.weight.copy_(self.conv_q.weight)
+ self.conv_k.bias.copy_(self.conv_q.bias)
+
+ def forward(self, x, c, attn_mask=None):
+ q = self.conv_q(x)
+ k = self.conv_k(c)
+ v = self.conv_v(c)
+
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
+
+ x = self.conv_o(x)
+ return x
+
+ def attention(self, query, key, value, mask=None):
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
+ b, d, t_s, t_t = (*key.size(), query.size(2))
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
+
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
+ if self.window_size is not None:
+ assert (
+ t_s == t_t
+ ), "Relative attention is only available for self-attention."
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
+ rel_logits = self._matmul_with_relative_keys(
+ query / math.sqrt(self.k_channels), key_relative_embeddings
+ )
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
+ scores = scores + scores_local
+ if self.proximal_bias:
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
+ scores = scores + self._attention_bias_proximal(t_s).to(
+ device=scores.device, dtype=scores.dtype
+ )
+ if mask is not None:
+ scores = scores.masked_fill(mask == 0, -1e4)
+ if self.block_length is not None:
+ assert (
+ t_s == t_t
+ ), "Local attention is only available for self-attention."
+ block_mask = (
+ torch.ones_like(scores)
+ .triu(-self.block_length)
+ .tril(self.block_length)
+ )
+ scores = scores.masked_fill(block_mask == 0, -1e4)
+ p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
+ p_attn = self.drop(p_attn)
+ output = torch.matmul(p_attn, value)
+ if self.window_size is not None:
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
+ value_relative_embeddings = self._get_relative_embeddings(
+ self.emb_rel_v, t_s
+ )
+ output = output + self._matmul_with_relative_values(
+ relative_weights, value_relative_embeddings
+ )
+ output = (
+ output.transpose(2, 3).contiguous().view(b, d, t_t)
+ ) # [b, n_h, t_t, d_k] -> [b, d, t_t]
+ return output, p_attn
+
+ def _matmul_with_relative_values(self, x, y):
+ """
+ x: [b, h, l, m]
+ y: [h or 1, m, d]
+ ret: [b, h, l, d]
+ """
+ ret = torch.matmul(x, y.unsqueeze(0))
+ return ret
+
+ def _matmul_with_relative_keys(self, x, y):
+ """
+ x: [b, h, l, d]
+ y: [h or 1, m, d]
+ ret: [b, h, l, m]
+ """
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
+ return ret
+
+ def _get_relative_embeddings(self, relative_embeddings, length):
+ max_relative_position = 2 * self.window_size + 1
+ # Pad first before slice to avoid using cond ops.
+ pad_length = max(length - (self.window_size + 1), 0)
+ slice_start_position = max((self.window_size + 1) - length, 0)
+ slice_end_position = slice_start_position + 2 * length - 1
+ if pad_length > 0:
+ padded_relative_embeddings = F.pad(
+ relative_embeddings,
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
+ )
+ else:
+ padded_relative_embeddings = relative_embeddings
+ used_relative_embeddings = padded_relative_embeddings[
+ :, slice_start_position:slice_end_position
+ ]
+ return used_relative_embeddings
+
+ def _relative_position_to_absolute_position(self, x):
+ """
+ x: [b, h, l, 2*l-1]
+ ret: [b, h, l, l]
+ """
+ batch, heads, length, _ = x.size()
+ # Concat columns of pad to shift from relative to absolute indexing.
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
+
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
+ x_flat = x.view([batch, heads, length * 2 * length])
+ x_flat = F.pad(
+ x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
+ )
+
+ # Reshape and slice out the padded elements.
+ x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
+ :, :, :length, length - 1 :
+ ]
+ return x_final
+
+ def _absolute_position_to_relative_position(self, x):
+ """
+ x: [b, h, l, l]
+ ret: [b, h, l, 2*l-1]
+ """
+ batch, heads, length, _ = x.size()
+ # padd along column
+ x = F.pad(
+ x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
+ )
+ x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
+ # add 0's in the beginning that will skew the elements after reshape
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
+ x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
+ return x_final
+
+ def _attention_bias_proximal(self, length):
+ """Bias for self-attention to encourage attention to close positions.
+ Args:
+ length: an integer scalar.
+ Returns:
+ a Tensor with shape [1, 1, length, length]
+ """
+ r = torch.arange(length, dtype=torch.float32)
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
+
+
+class FFN(nn.Module):
+ def __init__(
+ self,
+ in_channels,
+ out_channels,
+ filter_channels,
+ kernel_size,
+ p_dropout=0.0,
+ activation=None,
+ causal=False,
+ ):
+ super().__init__()
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.filter_channels = filter_channels
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.activation = activation
+ self.causal = causal
+
+ if causal:
+ self.padding = self._causal_padding
+ else:
+ self.padding = self._same_padding
+
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
+ self.drop = nn.Dropout(p_dropout)
+
+ def forward(self, x, x_mask):
+ x = self.conv_1(self.padding(x * x_mask))
+ if self.activation == "gelu":
+ x = x * torch.sigmoid(1.702 * x)
+ else:
+ x = torch.relu(x)
+ x = self.drop(x)
+ x = self.conv_2(self.padding(x * x_mask))
+ return x * x_mask
+
+ def _causal_padding(self, x):
+ if self.kernel_size == 1:
+ return x
+ pad_l = self.kernel_size - 1
+ pad_r = 0
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
+ x = F.pad(x, commons.convert_pad_shape(padding))
+ return x
+
+ def _same_padding(self, x):
+ if self.kernel_size == 1:
+ return x
+ pad_l = (self.kernel_size - 1) // 2
+ pad_r = self.kernel_size // 2
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
+ x = F.pad(x, commons.convert_pad_shape(padding))
+ return x
diff --git a/infer_pack/commons.py b/infer_pack/commons.py
new file mode 100644
index 0000000000000000000000000000000000000000..54470986f37825b35d90d7efa7437d1c26b87215
--- /dev/null
+++ b/infer_pack/commons.py
@@ -0,0 +1,166 @@
+import math
+import numpy as np
+import torch
+from torch import nn
+from torch.nn import functional as F
+
+
+def init_weights(m, mean=0.0, std=0.01):
+ classname = m.__class__.__name__
+ if classname.find("Conv") != -1:
+ m.weight.data.normal_(mean, std)
+
+
+def get_padding(kernel_size, dilation=1):
+ return int((kernel_size * dilation - dilation) / 2)
+
+
+def convert_pad_shape(pad_shape):
+ l = pad_shape[::-1]
+ pad_shape = [item for sublist in l for item in sublist]
+ return pad_shape
+
+
+def kl_divergence(m_p, logs_p, m_q, logs_q):
+ """KL(P||Q)"""
+ kl = (logs_q - logs_p) - 0.5
+ kl += (
+ 0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
+ )
+ return kl
+
+
+def rand_gumbel(shape):
+ """Sample from the Gumbel distribution, protect from overflows."""
+ uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
+ return -torch.log(-torch.log(uniform_samples))
+
+
+def rand_gumbel_like(x):
+ g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
+ return g
+
+
+def slice_segments(x, ids_str, segment_size=4):
+ ret = torch.zeros_like(x[:, :, :segment_size])
+ for i in range(x.size(0)):
+ idx_str = ids_str[i]
+ idx_end = idx_str + segment_size
+ ret[i] = x[i, :, idx_str:idx_end]
+ return ret
+
+
+def slice_segments2(x, ids_str, segment_size=4):
+ ret = torch.zeros_like(x[:, :segment_size])
+ for i in range(x.size(0)):
+ idx_str = ids_str[i]
+ idx_end = idx_str + segment_size
+ ret[i] = x[i, idx_str:idx_end]
+ return ret
+
+
+def rand_slice_segments(x, x_lengths=None, segment_size=4):
+ b, d, t = x.size()
+ if x_lengths is None:
+ x_lengths = t
+ ids_str_max = x_lengths - segment_size + 1
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
+ ret = slice_segments(x, ids_str, segment_size)
+ return ret, ids_str
+
+
+def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
+ position = torch.arange(length, dtype=torch.float)
+ num_timescales = channels // 2
+ log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
+ num_timescales - 1
+ )
+ inv_timescales = min_timescale * torch.exp(
+ torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
+ )
+ scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
+ signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
+ signal = F.pad(signal, [0, 0, 0, channels % 2])
+ signal = signal.view(1, channels, length)
+ return signal
+
+
+def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
+ b, channels, length = x.size()
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
+ return x + signal.to(dtype=x.dtype, device=x.device)
+
+
+def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
+ b, channels, length = x.size()
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
+ return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
+
+
+def subsequent_mask(length):
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
+ return mask
+
+
+@torch.jit.script
+def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
+ n_channels_int = n_channels[0]
+ in_act = input_a + input_b
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
+ acts = t_act * s_act
+ return acts
+
+
+def convert_pad_shape(pad_shape):
+ l = pad_shape[::-1]
+ pad_shape = [item for sublist in l for item in sublist]
+ return pad_shape
+
+
+def shift_1d(x):
+ x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
+ return x
+
+
+def sequence_mask(length, max_length=None):
+ if max_length is None:
+ max_length = length.max()
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
+ return x.unsqueeze(0) < length.unsqueeze(1)
+
+
+def generate_path(duration, mask):
+ """
+ duration: [b, 1, t_x]
+ mask: [b, 1, t_y, t_x]
+ """
+ device = duration.device
+
+ b, _, t_y, t_x = mask.shape
+ cum_duration = torch.cumsum(duration, -1)
+
+ cum_duration_flat = cum_duration.view(b * t_x)
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
+ path = path.view(b, t_x, t_y)
+ path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
+ path = path.unsqueeze(1).transpose(2, 3) * mask
+ return path
+
+
+def clip_grad_value_(parameters, clip_value, norm_type=2):
+ if isinstance(parameters, torch.Tensor):
+ parameters = [parameters]
+ parameters = list(filter(lambda p: p.grad is not None, parameters))
+ norm_type = float(norm_type)
+ if clip_value is not None:
+ clip_value = float(clip_value)
+
+ total_norm = 0
+ for p in parameters:
+ param_norm = p.grad.data.norm(norm_type)
+ total_norm += param_norm.item() ** norm_type
+ if clip_value is not None:
+ p.grad.data.clamp_(min=-clip_value, max=clip_value)
+ total_norm = total_norm ** (1.0 / norm_type)
+ return total_norm
diff --git a/infer_pack/models.py b/infer_pack/models.py
new file mode 100644
index 0000000000000000000000000000000000000000..96165f73644e6fb92d0ffedb4a3c9e1a457cb989
--- /dev/null
+++ b/infer_pack/models.py
@@ -0,0 +1,982 @@
+import math, pdb, os
+from time import time as ttime
+import torch
+from torch import nn
+from torch.nn import functional as F
+from infer_pack import modules
+from infer_pack import attentions
+from infer_pack import commons
+from infer_pack.commons import init_weights, get_padding
+from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
+from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
+from infer_pack.commons import init_weights
+import numpy as np
+from infer_pack import commons
+
+
+class TextEncoder256(nn.Module):
+ def __init__(
+ self,
+ out_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=True,
+ ):
+ super().__init__()
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.emb_phone = nn.Linear(256, hidden_channels)
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
+ if f0 == True:
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
+ self.encoder = attentions.Encoder(
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+
+ def forward(self, phone, pitch, lengths):
+ if pitch == None:
+ x = self.emb_phone(phone)
+ else:
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
+ x = self.lrelu(x)
+ x = torch.transpose(x, 1, -1) # [b, h, t]
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.encoder(x * x_mask, x_mask)
+ stats = self.proj(x) * x_mask
+
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ return m, logs, x_mask
+
+
+class TextEncoder256Sim(nn.Module):
+ def __init__(
+ self,
+ out_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=True,
+ ):
+ super().__init__()
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.emb_phone = nn.Linear(256, hidden_channels)
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
+ if f0 == True:
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
+ self.encoder = attentions.Encoder(
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
+
+ def forward(self, phone, pitch, lengths):
+ if pitch == None:
+ x = self.emb_phone(phone)
+ else:
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
+ x = self.lrelu(x)
+ x = torch.transpose(x, 1, -1) # [b, h, t]
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.encoder(x * x_mask, x_mask)
+ x = self.proj(x) * x_mask
+ return x, x_mask
+
+
+class ResidualCouplingBlock(nn.Module):
+ def __init__(
+ self,
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ n_flows=4,
+ gin_channels=0,
+ ):
+ super().__init__()
+ self.channels = channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.n_flows = n_flows
+ self.gin_channels = gin_channels
+
+ self.flows = nn.ModuleList()
+ for i in range(n_flows):
+ self.flows.append(
+ modules.ResidualCouplingLayer(
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=gin_channels,
+ mean_only=True,
+ )
+ )
+ self.flows.append(modules.Flip())
+
+ def forward(self, x, x_mask, g=None, reverse=False):
+ if not reverse:
+ for flow in self.flows:
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
+ else:
+ for flow in reversed(self.flows):
+ x = flow(x, x_mask, g=g, reverse=reverse)
+ return x
+
+ def remove_weight_norm(self):
+ for i in range(self.n_flows):
+ self.flows[i * 2].remove_weight_norm()
+
+
+class PosteriorEncoder(nn.Module):
+ def __init__(
+ self,
+ in_channels,
+ out_channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=0,
+ ):
+ super().__init__()
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.gin_channels = gin_channels
+
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
+ self.enc = modules.WN(
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=gin_channels,
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+
+ def forward(self, x, x_lengths, g=None):
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.pre(x) * x_mask
+ x = self.enc(x, x_mask, g=g)
+ stats = self.proj(x) * x_mask
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
+ return z, m, logs, x_mask
+
+ def remove_weight_norm(self):
+ self.enc.remove_weight_norm()
+
+
+class Generator(torch.nn.Module):
+ def __init__(
+ self,
+ initial_channel,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=0,
+ ):
+ super(Generator, self).__init__()
+ self.num_kernels = len(resblock_kernel_sizes)
+ self.num_upsamples = len(upsample_rates)
+ self.conv_pre = Conv1d(
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
+ )
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
+
+ self.ups = nn.ModuleList()
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
+ self.ups.append(
+ weight_norm(
+ ConvTranspose1d(
+ upsample_initial_channel // (2**i),
+ upsample_initial_channel // (2 ** (i + 1)),
+ k,
+ u,
+ padding=(k - u) // 2,
+ )
+ )
+ )
+
+ self.resblocks = nn.ModuleList()
+ for i in range(len(self.ups)):
+ ch = upsample_initial_channel // (2 ** (i + 1))
+ for j, (k, d) in enumerate(
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
+ ):
+ self.resblocks.append(resblock(ch, k, d))
+
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
+ self.ups.apply(init_weights)
+
+ if gin_channels != 0:
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
+
+ def forward(self, x, g=None):
+ x = self.conv_pre(x)
+ if g is not None:
+ x = x + self.cond(g)
+
+ for i in range(self.num_upsamples):
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ x = self.ups[i](x)
+ xs = None
+ for j in range(self.num_kernels):
+ if xs is None:
+ xs = self.resblocks[i * self.num_kernels + j](x)
+ else:
+ xs += self.resblocks[i * self.num_kernels + j](x)
+ x = xs / self.num_kernels
+ x = F.leaky_relu(x)
+ x = self.conv_post(x)
+ x = torch.tanh(x)
+
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.ups:
+ remove_weight_norm(l)
+ for l in self.resblocks:
+ l.remove_weight_norm()
+
+
+class SineGen(torch.nn.Module):
+ """Definition of sine generator
+ SineGen(samp_rate, harmonic_num = 0,
+ sine_amp = 0.1, noise_std = 0.003,
+ voiced_threshold = 0,
+ flag_for_pulse=False)
+ samp_rate: sampling rate in Hz
+ harmonic_num: number of harmonic overtones (default 0)
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
+ noise_std: std of Gaussian noise (default 0.003)
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
+ Note: when flag_for_pulse is True, the first time step of a voiced
+ segment is always sin(np.pi) or cos(0)
+ """
+
+ def __init__(
+ self,
+ samp_rate,
+ harmonic_num=0,
+ sine_amp=0.1,
+ noise_std=0.003,
+ voiced_threshold=0,
+ flag_for_pulse=False,
+ ):
+ super(SineGen, self).__init__()
+ self.sine_amp = sine_amp
+ self.noise_std = noise_std
+ self.harmonic_num = harmonic_num
+ self.dim = self.harmonic_num + 1
+ self.sampling_rate = samp_rate
+ self.voiced_threshold = voiced_threshold
+
+ def _f02uv(self, f0):
+ # generate uv signal
+ uv = torch.ones_like(f0)
+ uv = uv * (f0 > self.voiced_threshold)
+ return uv
+
+ def forward(self, f0, upp):
+ """sine_tensor, uv = forward(f0)
+ input F0: tensor(batchsize=1, length, dim=1)
+ f0 for unvoiced steps should be 0
+ output sine_tensor: tensor(batchsize=1, length, dim)
+ output uv: tensor(batchsize=1, length, 1)
+ """
+ with torch.no_grad():
+ f0 = f0[:, None].transpose(1, 2)
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
+ # fundamental component
+ f0_buf[:, :, 0] = f0[:, :, 0]
+ for idx in np.arange(self.harmonic_num):
+ f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
+ idx + 2
+ ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
+ rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
+ rand_ini = torch.rand(
+ f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
+ )
+ rand_ini[:, 0] = 0
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
+ tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
+ tmp_over_one *= upp
+ tmp_over_one = F.interpolate(
+ tmp_over_one.transpose(2, 1),
+ scale_factor=upp,
+ mode="linear",
+ align_corners=True,
+ ).transpose(2, 1)
+ rad_values = F.interpolate(
+ rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
+ ).transpose(
+ 2, 1
+ ) #######
+ tmp_over_one %= 1
+ tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
+ cumsum_shift = torch.zeros_like(rad_values)
+ cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
+ sine_waves = torch.sin(
+ torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
+ )
+ sine_waves = sine_waves * self.sine_amp
+ uv = self._f02uv(f0)
+ uv = F.interpolate(
+ uv.transpose(2, 1), scale_factor=upp, mode="nearest"
+ ).transpose(2, 1)
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
+ noise = noise_amp * torch.randn_like(sine_waves)
+ sine_waves = sine_waves * uv + noise
+ return sine_waves, uv, noise
+
+
+class SourceModuleHnNSF(torch.nn.Module):
+ """SourceModule for hn-nsf
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
+ add_noise_std=0.003, voiced_threshod=0)
+ sampling_rate: sampling_rate in Hz
+ harmonic_num: number of harmonic above F0 (default: 0)
+ sine_amp: amplitude of sine source signal (default: 0.1)
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
+ note that amplitude of noise in unvoiced is decided
+ by sine_amp
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
+ F0_sampled (batchsize, length, 1)
+ Sine_source (batchsize, length, 1)
+ noise_source (batchsize, length 1)
+ uv (batchsize, length, 1)
+ """
+
+ def __init__(
+ self,
+ sampling_rate,
+ harmonic_num=0,
+ sine_amp=0.1,
+ add_noise_std=0.003,
+ voiced_threshod=0,
+ is_half=True,
+ ):
+ super(SourceModuleHnNSF, self).__init__()
+
+ self.sine_amp = sine_amp
+ self.noise_std = add_noise_std
+ self.is_half = is_half
+ # to produce sine waveforms
+ self.l_sin_gen = SineGen(
+ sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
+ )
+
+ # to merge source harmonics into a single excitation
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
+ self.l_tanh = torch.nn.Tanh()
+
+ def forward(self, x, upp=None):
+ sine_wavs, uv, _ = self.l_sin_gen(x, upp)
+ if self.is_half:
+ sine_wavs = sine_wavs.half()
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
+ return sine_merge, None, None # noise, uv
+
+
+class GeneratorNSF(torch.nn.Module):
+ def __init__(
+ self,
+ initial_channel,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels,
+ sr,
+ is_half=False,
+ ):
+ super(GeneratorNSF, self).__init__()
+ self.num_kernels = len(resblock_kernel_sizes)
+ self.num_upsamples = len(upsample_rates)
+
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
+ self.m_source = SourceModuleHnNSF(
+ sampling_rate=sr, harmonic_num=0, is_half=is_half
+ )
+ self.noise_convs = nn.ModuleList()
+ self.conv_pre = Conv1d(
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
+ )
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
+
+ self.ups = nn.ModuleList()
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
+ c_cur = upsample_initial_channel // (2 ** (i + 1))
+ self.ups.append(
+ weight_norm(
+ ConvTranspose1d(
+ upsample_initial_channel // (2**i),
+ upsample_initial_channel // (2 ** (i + 1)),
+ k,
+ u,
+ padding=(k - u) // 2,
+ )
+ )
+ )
+ if i + 1 < len(upsample_rates):
+ stride_f0 = np.prod(upsample_rates[i + 1 :])
+ self.noise_convs.append(
+ Conv1d(
+ 1,
+ c_cur,
+ kernel_size=stride_f0 * 2,
+ stride=stride_f0,
+ padding=stride_f0 // 2,
+ )
+ )
+ else:
+ self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
+
+ self.resblocks = nn.ModuleList()
+ for i in range(len(self.ups)):
+ ch = upsample_initial_channel // (2 ** (i + 1))
+ for j, (k, d) in enumerate(
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
+ ):
+ self.resblocks.append(resblock(ch, k, d))
+
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
+ self.ups.apply(init_weights)
+
+ if gin_channels != 0:
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
+
+ self.upp = np.prod(upsample_rates)
+
+ def forward(self, x, f0, g=None):
+ har_source, noi_source, uv = self.m_source(f0, self.upp)
+ har_source = har_source.transpose(1, 2)
+ x = self.conv_pre(x)
+ if g is not None:
+ x = x + self.cond(g)
+
+ for i in range(self.num_upsamples):
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ x = self.ups[i](x)
+ x_source = self.noise_convs[i](har_source)
+ x = x + x_source
+ xs = None
+ for j in range(self.num_kernels):
+ if xs is None:
+ xs = self.resblocks[i * self.num_kernels + j](x)
+ else:
+ xs += self.resblocks[i * self.num_kernels + j](x)
+ x = xs / self.num_kernels
+ x = F.leaky_relu(x)
+ x = self.conv_post(x)
+ x = torch.tanh(x)
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.ups:
+ remove_weight_norm(l)
+ for l in self.resblocks:
+ l.remove_weight_norm()
+
+
+sr2sr = {
+ "32k": 32000,
+ "40k": 40000,
+ "48k": 48000,
+}
+
+
+class SynthesizerTrnMs256NSFsid(nn.Module):
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ gin_channels,
+ sr,
+ **kwargs
+ ):
+ super().__init__()
+ if type(sr) == type("strr"):
+ sr = sr2sr[sr]
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ self.enc_p = TextEncoder256(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ )
+ self.dec = GeneratorNSF(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ sr=sr,
+ is_half=kwargs["is_half"],
+ )
+ self.enc_q = PosteriorEncoder(
+ spec_channels,
+ inter_channels,
+ hidden_channels,
+ 5,
+ 1,
+ 16,
+ gin_channels=gin_channels,
+ )
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def forward(
+ self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
+ ): # 这里ds是id,[bs,1]
+ # print(1,pitch.shape)#[bs,t]
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
+ z_p = self.flow(z, y_mask, g=g)
+ z_slice, ids_slice = commons.rand_slice_segments(
+ z, y_lengths, self.segment_size
+ )
+ # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
+ pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
+ # print(-2,pitchf.shape,z_slice.shape)
+ o = self.dec(z_slice, pitchf, g=g)
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
+
+ def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
+ g = self.emb_g(sid).unsqueeze(-1)
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
+ o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
+ return o, x_mask, (z, z_p, m_p, logs_p)
+
+
+class SynthesizerTrnMs256NSFsid_nono(nn.Module):
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ gin_channels,
+ sr=None,
+ **kwargs
+ ):
+ super().__init__()
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ self.enc_p = TextEncoder256(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=False,
+ )
+ self.dec = Generator(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ )
+ self.enc_q = PosteriorEncoder(
+ spec_channels,
+ inter_channels,
+ hidden_channels,
+ 5,
+ 1,
+ 16,
+ gin_channels=gin_channels,
+ )
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
+ z_p = self.flow(z, y_mask, g=g)
+ z_slice, ids_slice = commons.rand_slice_segments(
+ z, y_lengths, self.segment_size
+ )
+ o = self.dec(z_slice, g=g)
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
+
+ def infer(self, phone, phone_lengths, sid, max_len=None):
+ g = self.emb_g(sid).unsqueeze(-1)
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
+ o = self.dec((z * x_mask)[:, :, :max_len], g=g)
+ return o, x_mask, (z, z_p, m_p, logs_p)
+
+
+class SynthesizerTrnMs256NSFsid_sim(nn.Module):
+ """
+ Synthesizer for Training
+ """
+
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ # hop_length,
+ gin_channels=0,
+ use_sdp=True,
+ **kwargs
+ ):
+ super().__init__()
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ self.enc_p = TextEncoder256Sim(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ )
+ self.dec = GeneratorNSF(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ is_half=kwargs["is_half"],
+ )
+
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def forward(
+ self, phone, phone_lengths, pitch, pitchf, y_lengths, ds
+ ): # y是spec不需要了现在
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
+ x, x_mask = self.enc_p(phone, pitch, phone_lengths)
+ x = self.flow(x, x_mask, g=g, reverse=True)
+ z_slice, ids_slice = commons.rand_slice_segments(
+ x, y_lengths, self.segment_size
+ )
+
+ pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
+ o = self.dec(z_slice, pitchf, g=g)
+ return o, ids_slice
+
+ def infer(
+ self, phone, phone_lengths, pitch, pitchf, ds, max_len=None
+ ): # y是spec不需要了现在
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
+ x, x_mask = self.enc_p(phone, pitch, phone_lengths)
+ x = self.flow(x, x_mask, g=g, reverse=True)
+ o = self.dec((x * x_mask)[:, :, :max_len], pitchf, g=g)
+ return o, o
+
+
+class MultiPeriodDiscriminator(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(MultiPeriodDiscriminator, self).__init__()
+ periods = [2, 3, 5, 7, 11, 17]
+ # periods = [3, 5, 7, 11, 17, 23, 37]
+
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
+ discs = discs + [
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
+ ]
+ self.discriminators = nn.ModuleList(discs)
+
+ def forward(self, y, y_hat):
+ y_d_rs = [] #
+ y_d_gs = []
+ fmap_rs = []
+ fmap_gs = []
+ for i, d in enumerate(self.discriminators):
+ y_d_r, fmap_r = d(y)
+ y_d_g, fmap_g = d(y_hat)
+ # for j in range(len(fmap_r)):
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
+ y_d_rs.append(y_d_r)
+ y_d_gs.append(y_d_g)
+ fmap_rs.append(fmap_r)
+ fmap_gs.append(fmap_g)
+
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+class DiscriminatorS(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(DiscriminatorS, self).__init__()
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList(
+ [
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
+ ]
+ )
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
+
+ def forward(self, x):
+ fmap = []
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
+
+
+class DiscriminatorP(torch.nn.Module):
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
+ super(DiscriminatorP, self).__init__()
+ self.period = period
+ self.use_spectral_norm = use_spectral_norm
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList(
+ [
+ norm_f(
+ Conv2d(
+ 1,
+ 32,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 32,
+ 128,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 128,
+ 512,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 512,
+ 1024,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 1024,
+ 1024,
+ (kernel_size, 1),
+ 1,
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ ]
+ )
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
+
+ def forward(self, x):
+ fmap = []
+
+ # 1d to 2d
+ b, c, t = x.shape
+ if t % self.period != 0: # pad first
+ n_pad = self.period - (t % self.period)
+ x = F.pad(x, (0, n_pad), "reflect")
+ t = t + n_pad
+ x = x.view(b, c, t // self.period, self.period)
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
diff --git a/infer_pack/models_onnx.py b/infer_pack/models_onnx.py
new file mode 100644
index 0000000000000000000000000000000000000000..3cdae2f7f8591a1e43b1d8520baa37b7e9744d72
--- /dev/null
+++ b/infer_pack/models_onnx.py
@@ -0,0 +1,849 @@
+import math, pdb, os
+from time import time as ttime
+import torch
+from torch import nn
+from torch.nn import functional as F
+from infer_pack import modules
+from infer_pack import attentions
+from infer_pack import commons
+from infer_pack.commons import init_weights, get_padding
+from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
+from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
+from infer_pack.commons import init_weights
+import numpy as np
+from infer_pack import commons
+
+
+class TextEncoder256(nn.Module):
+ def __init__(
+ self,
+ out_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=True,
+ ):
+ super().__init__()
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.emb_phone = nn.Linear(256, hidden_channels)
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
+ if f0 == True:
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
+ self.encoder = attentions.Encoder(
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+
+ def forward(self, phone, pitch, lengths):
+ if pitch == None:
+ x = self.emb_phone(phone)
+ else:
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
+ x = self.lrelu(x)
+ x = torch.transpose(x, 1, -1) # [b, h, t]
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.encoder(x * x_mask, x_mask)
+ stats = self.proj(x) * x_mask
+
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ return m, logs, x_mask
+
+
+class TextEncoder256Sim(nn.Module):
+ def __init__(
+ self,
+ out_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=True,
+ ):
+ super().__init__()
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.emb_phone = nn.Linear(256, hidden_channels)
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
+ if f0 == True:
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
+ self.encoder = attentions.Encoder(
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
+
+ def forward(self, phone, pitch, lengths):
+ if pitch == None:
+ x = self.emb_phone(phone)
+ else:
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
+ x = self.lrelu(x)
+ x = torch.transpose(x, 1, -1) # [b, h, t]
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.encoder(x * x_mask, x_mask)
+ x = self.proj(x) * x_mask
+ return x, x_mask
+
+
+class ResidualCouplingBlock(nn.Module):
+ def __init__(
+ self,
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ n_flows=4,
+ gin_channels=0,
+ ):
+ super().__init__()
+ self.channels = channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.n_flows = n_flows
+ self.gin_channels = gin_channels
+
+ self.flows = nn.ModuleList()
+ for i in range(n_flows):
+ self.flows.append(
+ modules.ResidualCouplingLayer(
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=gin_channels,
+ mean_only=True,
+ )
+ )
+ self.flows.append(modules.Flip())
+
+ def forward(self, x, x_mask, g=None, reverse=False):
+ if not reverse:
+ for flow in self.flows:
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
+ else:
+ for flow in reversed(self.flows):
+ x = flow(x, x_mask, g=g, reverse=reverse)
+ return x
+
+ def remove_weight_norm(self):
+ for i in range(self.n_flows):
+ self.flows[i * 2].remove_weight_norm()
+
+
+class PosteriorEncoder(nn.Module):
+ def __init__(
+ self,
+ in_channels,
+ out_channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=0,
+ ):
+ super().__init__()
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.gin_channels = gin_channels
+
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
+ self.enc = modules.WN(
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=gin_channels,
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+
+ def forward(self, x, x_lengths, g=None):
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.pre(x) * x_mask
+ x = self.enc(x, x_mask, g=g)
+ stats = self.proj(x) * x_mask
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
+ return z, m, logs, x_mask
+
+ def remove_weight_norm(self):
+ self.enc.remove_weight_norm()
+
+
+class Generator(torch.nn.Module):
+ def __init__(
+ self,
+ initial_channel,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=0,
+ ):
+ super(Generator, self).__init__()
+ self.num_kernels = len(resblock_kernel_sizes)
+ self.num_upsamples = len(upsample_rates)
+ self.conv_pre = Conv1d(
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
+ )
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
+
+ self.ups = nn.ModuleList()
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
+ self.ups.append(
+ weight_norm(
+ ConvTranspose1d(
+ upsample_initial_channel // (2**i),
+ upsample_initial_channel // (2 ** (i + 1)),
+ k,
+ u,
+ padding=(k - u) // 2,
+ )
+ )
+ )
+
+ self.resblocks = nn.ModuleList()
+ for i in range(len(self.ups)):
+ ch = upsample_initial_channel // (2 ** (i + 1))
+ for j, (k, d) in enumerate(
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
+ ):
+ self.resblocks.append(resblock(ch, k, d))
+
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
+ self.ups.apply(init_weights)
+
+ if gin_channels != 0:
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
+
+ def forward(self, x, g=None):
+ x = self.conv_pre(x)
+ if g is not None:
+ x = x + self.cond(g)
+
+ for i in range(self.num_upsamples):
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ x = self.ups[i](x)
+ xs = None
+ for j in range(self.num_kernels):
+ if xs is None:
+ xs = self.resblocks[i * self.num_kernels + j](x)
+ else:
+ xs += self.resblocks[i * self.num_kernels + j](x)
+ x = xs / self.num_kernels
+ x = F.leaky_relu(x)
+ x = self.conv_post(x)
+ x = torch.tanh(x)
+
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.ups:
+ remove_weight_norm(l)
+ for l in self.resblocks:
+ l.remove_weight_norm()
+
+
+class SineGen(torch.nn.Module):
+ """Definition of sine generator
+ SineGen(samp_rate, harmonic_num = 0,
+ sine_amp = 0.1, noise_std = 0.003,
+ voiced_threshold = 0,
+ flag_for_pulse=False)
+ samp_rate: sampling rate in Hz
+ harmonic_num: number of harmonic overtones (default 0)
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
+ noise_std: std of Gaussian noise (default 0.003)
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
+ Note: when flag_for_pulse is True, the first time step of a voiced
+ segment is always sin(np.pi) or cos(0)
+ """
+
+ def __init__(
+ self,
+ samp_rate,
+ harmonic_num=0,
+ sine_amp=0.1,
+ noise_std=0.003,
+ voiced_threshold=0,
+ flag_for_pulse=False,
+ ):
+ super(SineGen, self).__init__()
+ self.sine_amp = sine_amp
+ self.noise_std = noise_std
+ self.harmonic_num = harmonic_num
+ self.dim = self.harmonic_num + 1
+ self.sampling_rate = samp_rate
+ self.voiced_threshold = voiced_threshold
+
+ def _f02uv(self, f0):
+ # generate uv signal
+ uv = torch.ones_like(f0)
+ uv = uv * (f0 > self.voiced_threshold)
+ return uv
+
+ def forward(self, f0, upp):
+ """sine_tensor, uv = forward(f0)
+ input F0: tensor(batchsize=1, length, dim=1)
+ f0 for unvoiced steps should be 0
+ output sine_tensor: tensor(batchsize=1, length, dim)
+ output uv: tensor(batchsize=1, length, 1)
+ """
+ with torch.no_grad():
+ f0 = f0[:, None].transpose(1, 2)
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
+ # fundamental component
+ f0_buf[:, :, 0] = f0[:, :, 0]
+ for idx in np.arange(self.harmonic_num):
+ f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
+ idx + 2
+ ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
+ rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
+ rand_ini = torch.rand(
+ f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
+ )
+ rand_ini[:, 0] = 0
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
+ tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
+ tmp_over_one *= upp
+ tmp_over_one = F.interpolate(
+ tmp_over_one.transpose(2, 1),
+ scale_factor=upp,
+ mode="linear",
+ align_corners=True,
+ ).transpose(2, 1)
+ rad_values = F.interpolate(
+ rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
+ ).transpose(
+ 2, 1
+ ) #######
+ tmp_over_one %= 1
+ tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
+ cumsum_shift = torch.zeros_like(rad_values)
+ cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
+ sine_waves = torch.sin(
+ torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
+ )
+ sine_waves = sine_waves * self.sine_amp
+ uv = self._f02uv(f0)
+ uv = F.interpolate(
+ uv.transpose(2, 1), scale_factor=upp, mode="nearest"
+ ).transpose(2, 1)
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
+ noise = noise_amp * torch.randn_like(sine_waves)
+ sine_waves = sine_waves * uv + noise
+ return sine_waves, uv, noise
+
+
+class SourceModuleHnNSF(torch.nn.Module):
+ """SourceModule for hn-nsf
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
+ add_noise_std=0.003, voiced_threshod=0)
+ sampling_rate: sampling_rate in Hz
+ harmonic_num: number of harmonic above F0 (default: 0)
+ sine_amp: amplitude of sine source signal (default: 0.1)
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
+ note that amplitude of noise in unvoiced is decided
+ by sine_amp
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
+ F0_sampled (batchsize, length, 1)
+ Sine_source (batchsize, length, 1)
+ noise_source (batchsize, length 1)
+ uv (batchsize, length, 1)
+ """
+
+ def __init__(
+ self,
+ sampling_rate,
+ harmonic_num=0,
+ sine_amp=0.1,
+ add_noise_std=0.003,
+ voiced_threshod=0,
+ is_half=True,
+ ):
+ super(SourceModuleHnNSF, self).__init__()
+
+ self.sine_amp = sine_amp
+ self.noise_std = add_noise_std
+ self.is_half = is_half
+ # to produce sine waveforms
+ self.l_sin_gen = SineGen(
+ sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
+ )
+
+ # to merge source harmonics into a single excitation
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
+ self.l_tanh = torch.nn.Tanh()
+
+ def forward(self, x, upp=None):
+ sine_wavs, uv, _ = self.l_sin_gen(x, upp)
+ if self.is_half:
+ sine_wavs = sine_wavs.half()
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
+ return sine_merge, None, None # noise, uv
+
+
+class GeneratorNSF(torch.nn.Module):
+ def __init__(
+ self,
+ initial_channel,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels,
+ sr,
+ is_half=False,
+ ):
+ super(GeneratorNSF, self).__init__()
+ self.num_kernels = len(resblock_kernel_sizes)
+ self.num_upsamples = len(upsample_rates)
+
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
+ self.m_source = SourceModuleHnNSF(
+ sampling_rate=sr, harmonic_num=0, is_half=is_half
+ )
+ self.noise_convs = nn.ModuleList()
+ self.conv_pre = Conv1d(
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
+ )
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
+
+ self.ups = nn.ModuleList()
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
+ c_cur = upsample_initial_channel // (2 ** (i + 1))
+ self.ups.append(
+ weight_norm(
+ ConvTranspose1d(
+ upsample_initial_channel // (2**i),
+ upsample_initial_channel // (2 ** (i + 1)),
+ k,
+ u,
+ padding=(k - u) // 2,
+ )
+ )
+ )
+ if i + 1 < len(upsample_rates):
+ stride_f0 = np.prod(upsample_rates[i + 1 :])
+ self.noise_convs.append(
+ Conv1d(
+ 1,
+ c_cur,
+ kernel_size=stride_f0 * 2,
+ stride=stride_f0,
+ padding=stride_f0 // 2,
+ )
+ )
+ else:
+ self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
+
+ self.resblocks = nn.ModuleList()
+ for i in range(len(self.ups)):
+ ch = upsample_initial_channel // (2 ** (i + 1))
+ for j, (k, d) in enumerate(
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
+ ):
+ self.resblocks.append(resblock(ch, k, d))
+
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
+ self.ups.apply(init_weights)
+
+ if gin_channels != 0:
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
+
+ self.upp = np.prod(upsample_rates)
+
+ def forward(self, x, f0, g=None):
+ har_source, noi_source, uv = self.m_source(f0, self.upp)
+ har_source = har_source.transpose(1, 2)
+ x = self.conv_pre(x)
+ if g is not None:
+ x = x + self.cond(g)
+
+ for i in range(self.num_upsamples):
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ x = self.ups[i](x)
+ x_source = self.noise_convs[i](har_source)
+ x = x + x_source
+ xs = None
+ for j in range(self.num_kernels):
+ if xs is None:
+ xs = self.resblocks[i * self.num_kernels + j](x)
+ else:
+ xs += self.resblocks[i * self.num_kernels + j](x)
+ x = xs / self.num_kernels
+ x = F.leaky_relu(x)
+ x = self.conv_post(x)
+ x = torch.tanh(x)
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.ups:
+ remove_weight_norm(l)
+ for l in self.resblocks:
+ l.remove_weight_norm()
+
+
+sr2sr = {
+ "32k": 32000,
+ "40k": 40000,
+ "48k": 48000,
+}
+
+
+class SynthesizerTrnMs256NSFsid(nn.Module):
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ gin_channels,
+ sr,
+ **kwargs
+ ):
+ super().__init__()
+ if type(sr) == type("strr"):
+ sr = sr2sr[sr]
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ self.enc_p = TextEncoder256(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ )
+ self.dec = GeneratorNSF(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ sr=sr,
+ is_half=kwargs["is_half"],
+ )
+ self.enc_q = PosteriorEncoder(
+ spec_channels,
+ inter_channels,
+ hidden_channels,
+ 5,
+ 1,
+ 16,
+ gin_channels=gin_channels,
+ )
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def forward(self, phone, phone_lengths, pitch, nsff0, sid, rnd, max_len=None):
+ g = self.emb_g(sid).unsqueeze(-1)
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
+ z_p = (m_p + torch.exp(logs_p) * rnd) * x_mask
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
+ o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
+ return o
+
+
+class SynthesizerTrnMs256NSFsid_sim(nn.Module):
+ """
+ Synthesizer for Training
+ """
+
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ # hop_length,
+ gin_channels=0,
+ use_sdp=True,
+ **kwargs
+ ):
+ super().__init__()
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ self.enc_p = TextEncoder256Sim(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ )
+ self.dec = GeneratorNSF(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ is_half=kwargs["is_half"],
+ )
+
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def forward(
+ self, phone, phone_lengths, pitch, pitchf, ds, max_len=None
+ ): # y是spec不需要了现在
+ g = self.emb_g(ds.unsqueeze(0)).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
+ x, x_mask = self.enc_p(phone, pitch, phone_lengths)
+ x = self.flow(x, x_mask, g=g, reverse=True)
+ o = self.dec((x * x_mask)[:, :, :max_len], pitchf, g=g)
+ return o
+
+
+class MultiPeriodDiscriminator(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(MultiPeriodDiscriminator, self).__init__()
+ periods = [2, 3, 5, 7, 11, 17]
+ # periods = [3, 5, 7, 11, 17, 23, 37]
+
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
+ discs = discs + [
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
+ ]
+ self.discriminators = nn.ModuleList(discs)
+
+ def forward(self, y, y_hat):
+ y_d_rs = [] #
+ y_d_gs = []
+ fmap_rs = []
+ fmap_gs = []
+ for i, d in enumerate(self.discriminators):
+ y_d_r, fmap_r = d(y)
+ y_d_g, fmap_g = d(y_hat)
+ # for j in range(len(fmap_r)):
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
+ y_d_rs.append(y_d_r)
+ y_d_gs.append(y_d_g)
+ fmap_rs.append(fmap_r)
+ fmap_gs.append(fmap_g)
+
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+class DiscriminatorS(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(DiscriminatorS, self).__init__()
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList(
+ [
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
+ ]
+ )
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
+
+ def forward(self, x):
+ fmap = []
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
+
+
+class DiscriminatorP(torch.nn.Module):
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
+ super(DiscriminatorP, self).__init__()
+ self.period = period
+ self.use_spectral_norm = use_spectral_norm
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList(
+ [
+ norm_f(
+ Conv2d(
+ 1,
+ 32,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 32,
+ 128,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 128,
+ 512,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 512,
+ 1024,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 1024,
+ 1024,
+ (kernel_size, 1),
+ 1,
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ ]
+ )
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
+
+ def forward(self, x):
+ fmap = []
+
+ # 1d to 2d
+ b, c, t = x.shape
+ if t % self.period != 0: # pad first
+ n_pad = self.period - (t % self.period)
+ x = F.pad(x, (0, n_pad), "reflect")
+ t = t + n_pad
+ x = x.view(b, c, t // self.period, self.period)
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
diff --git a/infer_pack/modules.py b/infer_pack/modules.py
new file mode 100644
index 0000000000000000000000000000000000000000..960481cedad9a6106f2bf0b9e86e82b120f7b33f
--- /dev/null
+++ b/infer_pack/modules.py
@@ -0,0 +1,522 @@
+import copy
+import math
+import numpy as np
+import scipy
+import torch
+from torch import nn
+from torch.nn import functional as F
+
+from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
+from torch.nn.utils import weight_norm, remove_weight_norm
+
+from infer_pack import commons
+from infer_pack.commons import init_weights, get_padding
+from infer_pack.transforms import piecewise_rational_quadratic_transform
+
+
+LRELU_SLOPE = 0.1
+
+
+class LayerNorm(nn.Module):
+ def __init__(self, channels, eps=1e-5):
+ super().__init__()
+ self.channels = channels
+ self.eps = eps
+
+ self.gamma = nn.Parameter(torch.ones(channels))
+ self.beta = nn.Parameter(torch.zeros(channels))
+
+ def forward(self, x):
+ x = x.transpose(1, -1)
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
+ return x.transpose(1, -1)
+
+
+class ConvReluNorm(nn.Module):
+ def __init__(
+ self,
+ in_channels,
+ hidden_channels,
+ out_channels,
+ kernel_size,
+ n_layers,
+ p_dropout,
+ ):
+ super().__init__()
+ self.in_channels = in_channels
+ self.hidden_channels = hidden_channels
+ self.out_channels = out_channels
+ self.kernel_size = kernel_size
+ self.n_layers = n_layers
+ self.p_dropout = p_dropout
+ assert n_layers > 1, "Number of layers should be larger than 0."
+
+ self.conv_layers = nn.ModuleList()
+ self.norm_layers = nn.ModuleList()
+ self.conv_layers.append(
+ nn.Conv1d(
+ in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
+ )
+ )
+ self.norm_layers.append(LayerNorm(hidden_channels))
+ self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
+ for _ in range(n_layers - 1):
+ self.conv_layers.append(
+ nn.Conv1d(
+ hidden_channels,
+ hidden_channels,
+ kernel_size,
+ padding=kernel_size // 2,
+ )
+ )
+ self.norm_layers.append(LayerNorm(hidden_channels))
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
+ self.proj.weight.data.zero_()
+ self.proj.bias.data.zero_()
+
+ def forward(self, x, x_mask):
+ x_org = x
+ for i in range(self.n_layers):
+ x = self.conv_layers[i](x * x_mask)
+ x = self.norm_layers[i](x)
+ x = self.relu_drop(x)
+ x = x_org + self.proj(x)
+ return x * x_mask
+
+
+class DDSConv(nn.Module):
+ """
+ Dialted and Depth-Separable Convolution
+ """
+
+ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
+ super().__init__()
+ self.channels = channels
+ self.kernel_size = kernel_size
+ self.n_layers = n_layers
+ self.p_dropout = p_dropout
+
+ self.drop = nn.Dropout(p_dropout)
+ self.convs_sep = nn.ModuleList()
+ self.convs_1x1 = nn.ModuleList()
+ self.norms_1 = nn.ModuleList()
+ self.norms_2 = nn.ModuleList()
+ for i in range(n_layers):
+ dilation = kernel_size**i
+ padding = (kernel_size * dilation - dilation) // 2
+ self.convs_sep.append(
+ nn.Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ groups=channels,
+ dilation=dilation,
+ padding=padding,
+ )
+ )
+ self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
+ self.norms_1.append(LayerNorm(channels))
+ self.norms_2.append(LayerNorm(channels))
+
+ def forward(self, x, x_mask, g=None):
+ if g is not None:
+ x = x + g
+ for i in range(self.n_layers):
+ y = self.convs_sep[i](x * x_mask)
+ y = self.norms_1[i](y)
+ y = F.gelu(y)
+ y = self.convs_1x1[i](y)
+ y = self.norms_2[i](y)
+ y = F.gelu(y)
+ y = self.drop(y)
+ x = x + y
+ return x * x_mask
+
+
+class WN(torch.nn.Module):
+ def __init__(
+ self,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=0,
+ p_dropout=0,
+ ):
+ super(WN, self).__init__()
+ assert kernel_size % 2 == 1
+ self.hidden_channels = hidden_channels
+ self.kernel_size = (kernel_size,)
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.gin_channels = gin_channels
+ self.p_dropout = p_dropout
+
+ self.in_layers = torch.nn.ModuleList()
+ self.res_skip_layers = torch.nn.ModuleList()
+ self.drop = nn.Dropout(p_dropout)
+
+ if gin_channels != 0:
+ cond_layer = torch.nn.Conv1d(
+ gin_channels, 2 * hidden_channels * n_layers, 1
+ )
+ self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
+
+ for i in range(n_layers):
+ dilation = dilation_rate**i
+ padding = int((kernel_size * dilation - dilation) / 2)
+ in_layer = torch.nn.Conv1d(
+ hidden_channels,
+ 2 * hidden_channels,
+ kernel_size,
+ dilation=dilation,
+ padding=padding,
+ )
+ in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
+ self.in_layers.append(in_layer)
+
+ # last one is not necessary
+ if i < n_layers - 1:
+ res_skip_channels = 2 * hidden_channels
+ else:
+ res_skip_channels = hidden_channels
+
+ res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
+ res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
+ self.res_skip_layers.append(res_skip_layer)
+
+ def forward(self, x, x_mask, g=None, **kwargs):
+ output = torch.zeros_like(x)
+ n_channels_tensor = torch.IntTensor([self.hidden_channels])
+
+ if g is not None:
+ g = self.cond_layer(g)
+
+ for i in range(self.n_layers):
+ x_in = self.in_layers[i](x)
+ if g is not None:
+ cond_offset = i * 2 * self.hidden_channels
+ g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
+ else:
+ g_l = torch.zeros_like(x_in)
+
+ acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
+ acts = self.drop(acts)
+
+ res_skip_acts = self.res_skip_layers[i](acts)
+ if i < self.n_layers - 1:
+ res_acts = res_skip_acts[:, : self.hidden_channels, :]
+ x = (x + res_acts) * x_mask
+ output = output + res_skip_acts[:, self.hidden_channels :, :]
+ else:
+ output = output + res_skip_acts
+ return output * x_mask
+
+ def remove_weight_norm(self):
+ if self.gin_channels != 0:
+ torch.nn.utils.remove_weight_norm(self.cond_layer)
+ for l in self.in_layers:
+ torch.nn.utils.remove_weight_norm(l)
+ for l in self.res_skip_layers:
+ torch.nn.utils.remove_weight_norm(l)
+
+
+class ResBlock1(torch.nn.Module):
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
+ super(ResBlock1, self).__init__()
+ self.convs1 = nn.ModuleList(
+ [
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=dilation[0],
+ padding=get_padding(kernel_size, dilation[0]),
+ )
+ ),
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=dilation[1],
+ padding=get_padding(kernel_size, dilation[1]),
+ )
+ ),
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=dilation[2],
+ padding=get_padding(kernel_size, dilation[2]),
+ )
+ ),
+ ]
+ )
+ self.convs1.apply(init_weights)
+
+ self.convs2 = nn.ModuleList(
+ [
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=1,
+ padding=get_padding(kernel_size, 1),
+ )
+ ),
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=1,
+ padding=get_padding(kernel_size, 1),
+ )
+ ),
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=1,
+ padding=get_padding(kernel_size, 1),
+ )
+ ),
+ ]
+ )
+ self.convs2.apply(init_weights)
+
+ def forward(self, x, x_mask=None):
+ for c1, c2 in zip(self.convs1, self.convs2):
+ xt = F.leaky_relu(x, LRELU_SLOPE)
+ if x_mask is not None:
+ xt = xt * x_mask
+ xt = c1(xt)
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
+ if x_mask is not None:
+ xt = xt * x_mask
+ xt = c2(xt)
+ x = xt + x
+ if x_mask is not None:
+ x = x * x_mask
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.convs1:
+ remove_weight_norm(l)
+ for l in self.convs2:
+ remove_weight_norm(l)
+
+
+class ResBlock2(torch.nn.Module):
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
+ super(ResBlock2, self).__init__()
+ self.convs = nn.ModuleList(
+ [
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=dilation[0],
+ padding=get_padding(kernel_size, dilation[0]),
+ )
+ ),
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=dilation[1],
+ padding=get_padding(kernel_size, dilation[1]),
+ )
+ ),
+ ]
+ )
+ self.convs.apply(init_weights)
+
+ def forward(self, x, x_mask=None):
+ for c in self.convs:
+ xt = F.leaky_relu(x, LRELU_SLOPE)
+ if x_mask is not None:
+ xt = xt * x_mask
+ xt = c(xt)
+ x = xt + x
+ if x_mask is not None:
+ x = x * x_mask
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.convs:
+ remove_weight_norm(l)
+
+
+class Log(nn.Module):
+ def forward(self, x, x_mask, reverse=False, **kwargs):
+ if not reverse:
+ y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
+ logdet = torch.sum(-y, [1, 2])
+ return y, logdet
+ else:
+ x = torch.exp(x) * x_mask
+ return x
+
+
+class Flip(nn.Module):
+ def forward(self, x, *args, reverse=False, **kwargs):
+ x = torch.flip(x, [1])
+ if not reverse:
+ logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
+ return x, logdet
+ else:
+ return x
+
+
+class ElementwiseAffine(nn.Module):
+ def __init__(self, channels):
+ super().__init__()
+ self.channels = channels
+ self.m = nn.Parameter(torch.zeros(channels, 1))
+ self.logs = nn.Parameter(torch.zeros(channels, 1))
+
+ def forward(self, x, x_mask, reverse=False, **kwargs):
+ if not reverse:
+ y = self.m + torch.exp(self.logs) * x
+ y = y * x_mask
+ logdet = torch.sum(self.logs * x_mask, [1, 2])
+ return y, logdet
+ else:
+ x = (x - self.m) * torch.exp(-self.logs) * x_mask
+ return x
+
+
+class ResidualCouplingLayer(nn.Module):
+ def __init__(
+ self,
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ p_dropout=0,
+ gin_channels=0,
+ mean_only=False,
+ ):
+ assert channels % 2 == 0, "channels should be divisible by 2"
+ super().__init__()
+ self.channels = channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.half_channels = channels // 2
+ self.mean_only = mean_only
+
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
+ self.enc = WN(
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ p_dropout=p_dropout,
+ gin_channels=gin_channels,
+ )
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
+ self.post.weight.data.zero_()
+ self.post.bias.data.zero_()
+
+ def forward(self, x, x_mask, g=None, reverse=False):
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
+ h = self.pre(x0) * x_mask
+ h = self.enc(h, x_mask, g=g)
+ stats = self.post(h) * x_mask
+ if not self.mean_only:
+ m, logs = torch.split(stats, [self.half_channels] * 2, 1)
+ else:
+ m = stats
+ logs = torch.zeros_like(m)
+
+ if not reverse:
+ x1 = m + x1 * torch.exp(logs) * x_mask
+ x = torch.cat([x0, x1], 1)
+ logdet = torch.sum(logs, [1, 2])
+ return x, logdet
+ else:
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
+ x = torch.cat([x0, x1], 1)
+ return x
+
+ def remove_weight_norm(self):
+ self.enc.remove_weight_norm()
+
+
+class ConvFlow(nn.Module):
+ def __init__(
+ self,
+ in_channels,
+ filter_channels,
+ kernel_size,
+ n_layers,
+ num_bins=10,
+ tail_bound=5.0,
+ ):
+ super().__init__()
+ self.in_channels = in_channels
+ self.filter_channels = filter_channels
+ self.kernel_size = kernel_size
+ self.n_layers = n_layers
+ self.num_bins = num_bins
+ self.tail_bound = tail_bound
+ self.half_channels = in_channels // 2
+
+ self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
+ self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
+ self.proj = nn.Conv1d(
+ filter_channels, self.half_channels * (num_bins * 3 - 1), 1
+ )
+ self.proj.weight.data.zero_()
+ self.proj.bias.data.zero_()
+
+ def forward(self, x, x_mask, g=None, reverse=False):
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
+ h = self.pre(x0)
+ h = self.convs(h, x_mask, g=g)
+ h = self.proj(h) * x_mask
+
+ b, c, t = x0.shape
+ h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
+
+ unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
+ unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
+ self.filter_channels
+ )
+ unnormalized_derivatives = h[..., 2 * self.num_bins :]
+
+ x1, logabsdet = piecewise_rational_quadratic_transform(
+ x1,
+ unnormalized_widths,
+ unnormalized_heights,
+ unnormalized_derivatives,
+ inverse=reverse,
+ tails="linear",
+ tail_bound=self.tail_bound,
+ )
+
+ x = torch.cat([x0, x1], 1) * x_mask
+ logdet = torch.sum(logabsdet * x_mask, [1, 2])
+ if not reverse:
+ return x, logdet
+ else:
+ return x
diff --git a/infer_pack/transforms.py b/infer_pack/transforms.py
new file mode 100644
index 0000000000000000000000000000000000000000..a11f799e023864ff7082c1f49c0cc18351a13b47
--- /dev/null
+++ b/infer_pack/transforms.py
@@ -0,0 +1,209 @@
+import torch
+from torch.nn import functional as F
+
+import numpy as np
+
+
+DEFAULT_MIN_BIN_WIDTH = 1e-3
+DEFAULT_MIN_BIN_HEIGHT = 1e-3
+DEFAULT_MIN_DERIVATIVE = 1e-3
+
+
+def piecewise_rational_quadratic_transform(
+ inputs,
+ unnormalized_widths,
+ unnormalized_heights,
+ unnormalized_derivatives,
+ inverse=False,
+ tails=None,
+ tail_bound=1.0,
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
+ min_derivative=DEFAULT_MIN_DERIVATIVE,
+):
+ if tails is None:
+ spline_fn = rational_quadratic_spline
+ spline_kwargs = {}
+ else:
+ spline_fn = unconstrained_rational_quadratic_spline
+ spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
+
+ outputs, logabsdet = spline_fn(
+ inputs=inputs,
+ unnormalized_widths=unnormalized_widths,
+ unnormalized_heights=unnormalized_heights,
+ unnormalized_derivatives=unnormalized_derivatives,
+ inverse=inverse,
+ min_bin_width=min_bin_width,
+ min_bin_height=min_bin_height,
+ min_derivative=min_derivative,
+ **spline_kwargs
+ )
+ return outputs, logabsdet
+
+
+def searchsorted(bin_locations, inputs, eps=1e-6):
+ bin_locations[..., -1] += eps
+ return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
+
+
+def unconstrained_rational_quadratic_spline(
+ inputs,
+ unnormalized_widths,
+ unnormalized_heights,
+ unnormalized_derivatives,
+ inverse=False,
+ tails="linear",
+ tail_bound=1.0,
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
+ min_derivative=DEFAULT_MIN_DERIVATIVE,
+):
+ inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
+ outside_interval_mask = ~inside_interval_mask
+
+ outputs = torch.zeros_like(inputs)
+ logabsdet = torch.zeros_like(inputs)
+
+ if tails == "linear":
+ unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
+ constant = np.log(np.exp(1 - min_derivative) - 1)
+ unnormalized_derivatives[..., 0] = constant
+ unnormalized_derivatives[..., -1] = constant
+
+ outputs[outside_interval_mask] = inputs[outside_interval_mask]
+ logabsdet[outside_interval_mask] = 0
+ else:
+ raise RuntimeError("{} tails are not implemented.".format(tails))
+
+ (
+ outputs[inside_interval_mask],
+ logabsdet[inside_interval_mask],
+ ) = rational_quadratic_spline(
+ inputs=inputs[inside_interval_mask],
+ unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
+ unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
+ unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
+ inverse=inverse,
+ left=-tail_bound,
+ right=tail_bound,
+ bottom=-tail_bound,
+ top=tail_bound,
+ min_bin_width=min_bin_width,
+ min_bin_height=min_bin_height,
+ min_derivative=min_derivative,
+ )
+
+ return outputs, logabsdet
+
+
+def rational_quadratic_spline(
+ inputs,
+ unnormalized_widths,
+ unnormalized_heights,
+ unnormalized_derivatives,
+ inverse=False,
+ left=0.0,
+ right=1.0,
+ bottom=0.0,
+ top=1.0,
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
+ min_derivative=DEFAULT_MIN_DERIVATIVE,
+):
+ if torch.min(inputs) < left or torch.max(inputs) > right:
+ raise ValueError("Input to a transform is not within its domain")
+
+ num_bins = unnormalized_widths.shape[-1]
+
+ if min_bin_width * num_bins > 1.0:
+ raise ValueError("Minimal bin width too large for the number of bins")
+ if min_bin_height * num_bins > 1.0:
+ raise ValueError("Minimal bin height too large for the number of bins")
+
+ widths = F.softmax(unnormalized_widths, dim=-1)
+ widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
+ cumwidths = torch.cumsum(widths, dim=-1)
+ cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
+ cumwidths = (right - left) * cumwidths + left
+ cumwidths[..., 0] = left
+ cumwidths[..., -1] = right
+ widths = cumwidths[..., 1:] - cumwidths[..., :-1]
+
+ derivatives = min_derivative + F.softplus(unnormalized_derivatives)
+
+ heights = F.softmax(unnormalized_heights, dim=-1)
+ heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
+ cumheights = torch.cumsum(heights, dim=-1)
+ cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
+ cumheights = (top - bottom) * cumheights + bottom
+ cumheights[..., 0] = bottom
+ cumheights[..., -1] = top
+ heights = cumheights[..., 1:] - cumheights[..., :-1]
+
+ if inverse:
+ bin_idx = searchsorted(cumheights, inputs)[..., None]
+ else:
+ bin_idx = searchsorted(cumwidths, inputs)[..., None]
+
+ input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
+ input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
+
+ input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
+ delta = heights / widths
+ input_delta = delta.gather(-1, bin_idx)[..., 0]
+
+ input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
+ input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
+
+ input_heights = heights.gather(-1, bin_idx)[..., 0]
+
+ if inverse:
+ a = (inputs - input_cumheights) * (
+ input_derivatives + input_derivatives_plus_one - 2 * input_delta
+ ) + input_heights * (input_delta - input_derivatives)
+ b = input_heights * input_derivatives - (inputs - input_cumheights) * (
+ input_derivatives + input_derivatives_plus_one - 2 * input_delta
+ )
+ c = -input_delta * (inputs - input_cumheights)
+
+ discriminant = b.pow(2) - 4 * a * c
+ assert (discriminant >= 0).all()
+
+ root = (2 * c) / (-b - torch.sqrt(discriminant))
+ outputs = root * input_bin_widths + input_cumwidths
+
+ theta_one_minus_theta = root * (1 - root)
+ denominator = input_delta + (
+ (input_derivatives + input_derivatives_plus_one - 2 * input_delta)
+ * theta_one_minus_theta
+ )
+ derivative_numerator = input_delta.pow(2) * (
+ input_derivatives_plus_one * root.pow(2)
+ + 2 * input_delta * theta_one_minus_theta
+ + input_derivatives * (1 - root).pow(2)
+ )
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
+
+ return outputs, -logabsdet
+ else:
+ theta = (inputs - input_cumwidths) / input_bin_widths
+ theta_one_minus_theta = theta * (1 - theta)
+
+ numerator = input_heights * (
+ input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta
+ )
+ denominator = input_delta + (
+ (input_derivatives + input_derivatives_plus_one - 2 * input_delta)
+ * theta_one_minus_theta
+ )
+ outputs = input_cumheights + numerator / denominator
+
+ derivative_numerator = input_delta.pow(2) * (
+ input_derivatives_plus_one * theta.pow(2)
+ + 2 * input_delta * theta_one_minus_theta
+ + input_derivatives * (1 - theta).pow(2)
+ )
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
+
+ return outputs, logabsdet
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..8cf101a14ba894919ff8a7fa427fe299df195934
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,46 @@
+numba==0.56.4
+numpy==1.23.5
+scipy==1.9.3
+librosa==0.9.2
+llvmlite==0.39.0
+fairseq==0.12.2
+faiss-cpu==1.7.0; sys_platform == "darwin"
+faiss-cpu==1.7.2; sys_platform != "darwin"
+gradio
+Cython
+future>=0.18.3
+pydub>=0.25.1
+soundfile>=0.12.1
+ffmpeg-python>=0.2.0
+tensorboardX
+functorch>=2.0.0
+Jinja2>=3.1.2
+json5>=0.9.11
+Markdown
+matplotlib>=3.7.1
+matplotlib-inline>=0.1.6
+praat-parselmouth>=0.4.3
+Pillow>=9.1.1
+pyworld>=0.3.2
+resampy>=0.4.2
+scikit-learn>=1.2.2
+starlette>=0.26.1
+tensorboard
+tensorboard-data-server
+tensorboard-plugin-wit
+torchgen>=0.0.1
+tqdm>=4.65.0
+tornado>=6.2
+Werkzeug>=2.2.3
+uc-micro-py>=1.0.1
+sympy>=1.11.1
+tabulate>=0.9.0
+PyYAML>=6.0
+pyasn1>=0.4.8
+pyasn1-modules>=0.2.8
+fsspec>=2023.3.0
+absl-py>=1.4.0
+audioread
+uvicorn>=0.21.1
+colorama>=0.4.6
+edge-tts
diff --git a/vc_infer_pipeline.py b/vc_infer_pipeline.py
new file mode 100644
index 0000000000000000000000000000000000000000..c26d45068f9b6bf2b194b13c3c89f8a06347c124
--- /dev/null
+++ b/vc_infer_pipeline.py
@@ -0,0 +1,306 @@
+import numpy as np, parselmouth, torch, pdb
+from time import time as ttime
+import torch.nn.functional as F
+from config import x_pad, x_query, x_center, x_max
+import scipy.signal as signal
+import pyworld, os, traceback, faiss
+from scipy import signal
+
+bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
+
+
+class VC(object):
+ def __init__(self, tgt_sr, device, is_half):
+ self.sr = 16000 # hubert输入采样率
+ self.window = 160 # 每帧点数
+ self.t_pad = self.sr * x_pad # 每条前后pad时间
+ self.t_pad_tgt = tgt_sr * x_pad
+ self.t_pad2 = self.t_pad * 2
+ self.t_query = self.sr * x_query # 查询切点前后查询时间
+ self.t_center = self.sr * x_center # 查询切点位置
+ self.t_max = self.sr * x_max # 免查询时长阈值
+ self.device = device
+ self.is_half = is_half
+
+ def get_f0(self, x, p_len, f0_up_key, f0_method, inp_f0=None):
+ time_step = self.window / self.sr * 1000
+ f0_min = 50
+ f0_max = 1100
+ f0_mel_min = 1127 * np.log(1 + f0_min / 700)
+ f0_mel_max = 1127 * np.log(1 + f0_max / 700)
+ if f0_method == "pm":
+ f0 = (
+ parselmouth.Sound(x, self.sr)
+ .to_pitch_ac(
+ time_step=time_step / 1000,
+ voicing_threshold=0.6,
+ pitch_floor=f0_min,
+ pitch_ceiling=f0_max,
+ )
+ .selected_array["frequency"]
+ )
+ pad_size = (p_len - len(f0) + 1) // 2
+ if pad_size > 0 or p_len - len(f0) - pad_size > 0:
+ f0 = np.pad(
+ f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
+ )
+ elif f0_method == "harvest":
+ f0, t = pyworld.harvest(
+ x.astype(np.double),
+ fs=self.sr,
+ f0_ceil=f0_max,
+ f0_floor=f0_min,
+ frame_period=10,
+ )
+ f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
+ f0 = signal.medfilt(f0, 3)
+ f0 *= pow(2, f0_up_key / 12)
+ # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
+ tf0 = self.sr // self.window # 每秒f0点数
+ if inp_f0 is not None:
+ delta_t = np.round(
+ (inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
+ ).astype("int16")
+ replace_f0 = np.interp(
+ list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
+ )
+ shape = f0[x_pad * tf0 : x_pad * tf0 + len(replace_f0)].shape[0]
+ f0[x_pad * tf0 : x_pad * tf0 + len(replace_f0)] = replace_f0[:shape]
+ # with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
+ f0bak = f0.copy()
+ f0_mel = 1127 * np.log(1 + f0 / 700)
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
+ f0_mel_max - f0_mel_min
+ ) + 1
+ f0_mel[f0_mel <= 1] = 1
+ f0_mel[f0_mel > 255] = 255
+ f0_coarse = np.rint(f0_mel).astype(np.int)
+ return f0_coarse, f0bak # 1-0
+
+ def vc(
+ self,
+ model,
+ net_g,
+ sid,
+ audio0,
+ pitch,
+ pitchf,
+ times,
+ index,
+ big_npy,
+ index_rate,
+ ): # ,file_index,file_big_npy
+ feats = torch.from_numpy(audio0)
+ if self.is_half:
+ feats = feats.half()
+ else:
+ feats = feats.float()
+ if feats.dim() == 2: # double channels
+ feats = feats.mean(-1)
+ assert feats.dim() == 1, feats.dim()
+ feats = feats.view(1, -1)
+ padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
+
+ inputs = {
+ "source": feats.to(self.device),
+ "padding_mask": padding_mask,
+ "output_layer": 9, # layer 9
+ }
+ t0 = ttime()
+ with torch.no_grad():
+ logits = model.extract_features(**inputs)
+ feats = model.final_proj(logits[0])
+
+ if (
+ isinstance(index, type(None)) == False
+ and isinstance(big_npy, type(None)) == False
+ and index_rate != 0
+ ):
+ npy = feats[0].cpu().numpy()
+ if self.is_half:
+ npy = npy.astype("float32")
+ _, I = index.search(npy, 1)
+ npy = big_npy[I.squeeze()]
+ if self.is_half:
+ npy = npy.astype("float16")
+ feats = (
+ torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
+ + (1 - index_rate) * feats
+ )
+
+ feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
+ t1 = ttime()
+ p_len = audio0.shape[0] // self.window
+ if feats.shape[1] < p_len:
+ p_len = feats.shape[1]
+ if pitch != None and pitchf != None:
+ pitch = pitch[:, :p_len]
+ pitchf = pitchf[:, :p_len]
+ p_len = torch.tensor([p_len], device=self.device).long()
+ with torch.no_grad():
+ if pitch != None and pitchf != None:
+ audio1 = (
+ (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0] * 32768)
+ .data.cpu()
+ .float()
+ .numpy()
+ .astype(np.int16)
+ )
+ else:
+ audio1 = (
+ (net_g.infer(feats, p_len, sid)[0][0, 0] * 32768)
+ .data.cpu()
+ .float()
+ .numpy()
+ .astype(np.int16)
+ )
+ del feats, p_len, padding_mask
+ if torch.cuda.is_available():
+ torch.cuda.empty_cache()
+ t2 = ttime()
+ times[0] += t1 - t0
+ times[2] += t2 - t1
+ return audio1
+
+ def pipeline(
+ self,
+ model,
+ net_g,
+ sid,
+ audio,
+ times,
+ f0_up_key,
+ f0_method,
+ file_index,
+ file_big_npy,
+ index_rate,
+ if_f0,
+ f0_file=None,
+ ):
+ if (
+ file_big_npy != ""
+ and file_index != ""
+ and os.path.exists(file_big_npy) == True
+ and os.path.exists(file_index) == True
+ and index_rate != 0
+ ):
+ try:
+ index = faiss.read_index(file_index)
+ big_npy = np.load(file_big_npy)
+ except:
+ traceback.print_exc()
+ index = big_npy = None
+ else:
+ index = big_npy = None
+ print("Feature retrieval library doesn't exist or ratio is 0")
+ audio = signal.filtfilt(bh, ah, audio)
+ audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
+ opt_ts = []
+ if audio_pad.shape[0] > self.t_max:
+ audio_sum = np.zeros_like(audio)
+ for i in range(self.window):
+ audio_sum += audio_pad[i : i - self.window]
+ for t in range(self.t_center, audio.shape[0], self.t_center):
+ opt_ts.append(
+ t
+ - self.t_query
+ + np.where(
+ np.abs(audio_sum[t - self.t_query : t + self.t_query])
+ == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
+ )[0][0]
+ )
+ s = 0
+ audio_opt = []
+ t = None
+ t1 = ttime()
+ audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
+ p_len = audio_pad.shape[0] // self.window
+ inp_f0 = None
+ if hasattr(f0_file, "name") == True:
+ try:
+ with open(f0_file.name, "r") as f:
+ lines = f.read().strip("\n").split("\n")
+ inp_f0 = []
+ for line in lines:
+ inp_f0.append([float(i) for i in line.split(",")])
+ inp_f0 = np.array(inp_f0, dtype="float32")
+ except:
+ traceback.print_exc()
+ sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
+ pitch, pitchf = None, None
+ if if_f0 == 1:
+ pitch, pitchf = self.get_f0(audio_pad, p_len, f0_up_key, f0_method, inp_f0)
+ pitch = pitch[:p_len]
+ pitchf = pitchf[:p_len]
+ pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
+ pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
+ t2 = ttime()
+ times[1] += t2 - t1
+ for t in opt_ts:
+ t = t // self.window * self.window
+ if if_f0 == 1:
+ audio_opt.append(
+ self.vc(
+ model,
+ net_g,
+ sid,
+ audio_pad[s : t + self.t_pad2 + self.window],
+ pitch[:, s // self.window : (t + self.t_pad2) // self.window],
+ pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
+ times,
+ index,
+ big_npy,
+ index_rate,
+ )[self.t_pad_tgt : -self.t_pad_tgt]
+ )
+ else:
+ audio_opt.append(
+ self.vc(
+ model,
+ net_g,
+ sid,
+ audio_pad[s : t + self.t_pad2 + self.window],
+ None,
+ None,
+ times,
+ index,
+ big_npy,
+ index_rate,
+ )[self.t_pad_tgt : -self.t_pad_tgt]
+ )
+ s = t
+ if if_f0 == 1:
+ audio_opt.append(
+ self.vc(
+ model,
+ net_g,
+ sid,
+ audio_pad[t:],
+ pitch[:, t // self.window :] if t is not None else pitch,
+ pitchf[:, t // self.window :] if t is not None else pitchf,
+ times,
+ index,
+ big_npy,
+ index_rate,
+ )[self.t_pad_tgt : -self.t_pad_tgt]
+ )
+ else:
+ audio_opt.append(
+ self.vc(
+ model,
+ net_g,
+ sid,
+ audio_pad[t:],
+ None,
+ None,
+ times,
+ index,
+ big_npy,
+ index_rate,
+ )[self.t_pad_tgt : -self.t_pad_tgt]
+ )
+ audio_opt = np.concatenate(audio_opt)
+ del pitch, pitchf, sid
+ if torch.cuda.is_available():
+ torch.cuda.empty_cache()
+ return audio_opt
diff --git a/weights/alhaitham/added_IVF519_Flat_nprobe_1.index b/weights/alhaitham/added_IVF519_Flat_nprobe_1.index
new file mode 100644
index 0000000000000000000000000000000000000000..b9e3f0e0a84460830eb1040ce12cec430b213c58
--- /dev/null
+++ b/weights/alhaitham/added_IVF519_Flat_nprobe_1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:85f6bec29b85a4943cf13fa410f5e1ed33a2aff40d65ac4be130670a01bff95a
+size 21444067
diff --git a/weights/alhaitham/alhaitham.pth b/weights/alhaitham/alhaitham.pth
new file mode 100644
index 0000000000000000000000000000000000000000..5f92f58c2f636cbb8d8c0e3abbd245c7ce2271fc
--- /dev/null
+++ b/weights/alhaitham/alhaitham.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:8f69897b83edba6bfcb9a5dabd415b8065d2d5b831bc437351982d3d43e55d07
+size 55027589
diff --git a/weights/alhaitham/cover.png b/weights/alhaitham/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..0b9d733ef0f8ac7dce98ea56480bf72ecc5a36b9
--- /dev/null
+++ b/weights/alhaitham/cover.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:98c5815f3675a7ea738e60e636603ac62c73a2a17c778c34e840192dc6dd486c
+size 2132294
diff --git a/weights/alhaitham/total_fea.npy b/weights/alhaitham/total_fea.npy
new file mode 100644
index 0000000000000000000000000000000000000000..7765f95b27ed770761a2616e91736472811145fe
--- /dev/null
+++ b/weights/alhaitham/total_fea.npy
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:8a5f8dd07f026a4b52bb473c48e2f528d39d4ceb75ca3bee4fbf3f3b6bd5b2f7
+size 20746368
diff --git a/weights/alice/added_IVF141_Flat_nprobe_4.index b/weights/alice/added_IVF141_Flat_nprobe_4.index
new file mode 100644
index 0000000000000000000000000000000000000000..e16641b78e894c226a0b22ea224dee816f54dfb5
--- /dev/null
+++ b/weights/alice/added_IVF141_Flat_nprobe_4.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:eed46609c9e9c523abdc8ad170d1137f174a8bdf717eaab0dc4a3e4d2c7f18a9
+size 5853643
diff --git a/weights/alice/alice.pth b/weights/alice/alice.pth
new file mode 100644
index 0000000000000000000000000000000000000000..1215a89804ef4304493c90f55af8f3f7ead9519f
--- /dev/null
+++ b/weights/alice/alice.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:dc39d78ca91a723677ad914449e2f015428232aa5f5ebde71e19147ef70fbaab
+size 55093677
diff --git a/weights/alice/cover.png b/weights/alice/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..f277dfa8989b745dc0da219859c1759d721daa58
Binary files /dev/null and b/weights/alice/cover.png differ
diff --git a/weights/alice/total_fea.npy b/weights/alice/total_fea.npy
new file mode 100644
index 0000000000000000000000000000000000000000..44c987606c590bc010c3639f1f6f7bf3f782346e
--- /dev/null
+++ b/weights/alice/total_fea.npy
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:75953467f52c13b21d096f41637239dbbcd4b1e699fa7634c898d5af92847779
+size 5663872
diff --git a/weights/ayaka-jp/added_IVF823_Flat_nprobe_1.index b/weights/ayaka-jp/added_IVF823_Flat_nprobe_1.index
new file mode 100644
index 0000000000000000000000000000000000000000..8e5efda3245768367657a56f6c833c7c07749da6
--- /dev/null
+++ b/weights/ayaka-jp/added_IVF823_Flat_nprobe_1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d34d21ac7be86ac551ee785c8b99d25ba07ccaa8c856124ff3ca352d84cfc66d
+size 33989059
diff --git a/weights/ayaka-jp/ayaka-jp.pth b/weights/ayaka-jp/ayaka-jp.pth
new file mode 100644
index 0000000000000000000000000000000000000000..5e1de715850ef2529cb94f0d64c021cc6461f360
--- /dev/null
+++ b/weights/ayaka-jp/ayaka-jp.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e6e8f22eb54166ad245b3f6dba497a3903f4c406f2a946bab2148ee3c05c23af
+size 54996633
diff --git a/weights/ayaka-jp/cover.png b/weights/ayaka-jp/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..fc5f9836f85c6b49f380b7b2a1c0c9d7e92399d0
Binary files /dev/null and b/weights/ayaka-jp/cover.png differ
diff --git a/weights/ayaka-jp/total_fea.npy b/weights/ayaka-jp/total_fea.npy
new file mode 100644
index 0000000000000000000000000000000000000000..aabad719977784d8d3cc12555fa8fe51ee0eb987
--- /dev/null
+++ b/weights/ayaka-jp/total_fea.npy
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:bedcf51c5cb11ab24a0bd4b99c3d5409398483dd4b35c5b43813851fcc37815e
+size 32882816
diff --git a/weights/eula-en/added_IVF982_Flat_nprobe_1.index b/weights/eula-en/added_IVF982_Flat_nprobe_1.index
new file mode 100644
index 0000000000000000000000000000000000000000..6a068295114b0e2b40334c3f2a41853499d78d8e
--- /dev/null
+++ b/weights/eula-en/added_IVF982_Flat_nprobe_1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:faa50e2f3c4290dfd5640fbca79c2b5186aca97e99cba2eafd4b2d99ec2a5e3c
+size 40564963
diff --git a/weights/eula-en/cover.png b/weights/eula-en/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..4f5d5ea045d68cef95f7b5ecc4fa3be224431103
Binary files /dev/null and b/weights/eula-en/cover.png differ
diff --git a/weights/eula-en/eula-en.pth b/weights/eula-en/eula-en.pth
new file mode 100644
index 0000000000000000000000000000000000000000..a62189ff6e37a077ba49980aeb20a2fe4448134e
--- /dev/null
+++ b/weights/eula-en/eula-en.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f6b146fa8ec2b60a7d03dc7e221bca64e1b8faaf70a4ff7b3be13ebc78660f0b
+size 54996174
diff --git a/weights/eula-en/total_fea.npy b/weights/eula-en/total_fea.npy
new file mode 100644
index 0000000000000000000000000000000000000000..59240fe6e3fc98ff0756dbc172ddd70d79aef48b
--- /dev/null
+++ b/weights/eula-en/total_fea.npy
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:88f21815e143f0e7eca04d403989f40e230165aec3fa7630d33947abf605991a
+size 39244928
diff --git a/weights/hutao-jp/added_IVF265_Flat_nprobe_5.index b/weights/hutao-jp/added_IVF265_Flat_nprobe_5.index
new file mode 100644
index 0000000000000000000000000000000000000000..b11623d9924d8f802bb4dcb6aa4e12bc4d557720
--- /dev/null
+++ b/weights/hutao-jp/added_IVF265_Flat_nprobe_5.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:1250005b613d5ffb368da9f93fbde733074757cdba9fb1fd04aa1f286b883e0a
+size 10962043
diff --git a/weights/hutao-jp/cover.png b/weights/hutao-jp/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..b2cf3c82b2c31d82dcacae7e4d40643ce3a3fda2
--- /dev/null
+++ b/weights/hutao-jp/cover.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:0c340408b59bbe8820621a54a00196eef612aa3a81c3a750df572942d456eb86
+size 241382
diff --git a/weights/hutao-jp/hutao-jp.pth b/weights/hutao-jp/hutao-jp.pth
new file mode 100644
index 0000000000000000000000000000000000000000..75c2dd4bc0448275dc059299dca3d9c31a5a679f
--- /dev/null
+++ b/weights/hutao-jp/hutao-jp.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:52ae0bd715c555b8e0072bc98bf4b462aab42b93a48307652e7a9164a0539990
+size 55027130
diff --git a/weights/hutao-jp/total_fea.npy b/weights/hutao-jp/total_fea.npy
new file mode 100644
index 0000000000000000000000000000000000000000..bf396316f4cb1eabab289f6749d7959ac5856c49
--- /dev/null
+++ b/weights/hutao-jp/total_fea.npy
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:7e6c6687b5d0881113a54ca53b0486292538853c6a6488c702bf94d991b7aec5
+size 10605696
diff --git a/weights/kazuha-jp/added_IVF677_Flat_nprobe_7.index b/weights/kazuha-jp/added_IVF677_Flat_nprobe_7.index
new file mode 100644
index 0000000000000000000000000000000000000000..932bd064bf70acaadc761da45a986ae7c1426552
--- /dev/null
+++ b/weights/kazuha-jp/added_IVF677_Flat_nprobe_7.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:47d1f762e5d990d317ee7fb7d18190a37d6a7169ededd726b912b013c67fa20f
+size 27970435
diff --git a/weights/kazuha-jp/cover.png b/weights/kazuha-jp/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..18af709059ba199c4c626956a92c2383dd5357db
--- /dev/null
+++ b/weights/kazuha-jp/cover.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f846b67cc8e730c6e2bd0c4c565280172aa89ebee0691b9f8e277edd9df58b2c
+size 213587
diff --git a/weights/kazuha-jp/kazuha-jp.pth b/weights/kazuha-jp/kazuha-jp.pth
new file mode 100644
index 0000000000000000000000000000000000000000..7507702fe3bf2b6c8ec207add11c65b5e19b6c22
--- /dev/null
+++ b/weights/kazuha-jp/kazuha-jp.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d69c9c77250cff7c47a74de33ac11089ccc41122f7a5461b77f14f28738dd7e7
+size 55027589
diff --git a/weights/kazuha-jp/total_fea.npy b/weights/kazuha-jp/total_fea.npy
new file mode 100644
index 0000000000000000000000000000000000000000..968b678ead5fe3f2163a08541fe825eb3e2d8e60
--- /dev/null
+++ b/weights/kazuha-jp/total_fea.npy
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:2f8bd3cc84c5e8230f4631dac4839b922f0b4e726b325813bc75773e19a2f19f
+size 27060352
diff --git a/weights/kirara-jp/added_IVF672_Flat_nprobe_1.index b/weights/kirara-jp/added_IVF672_Flat_nprobe_1.index
new file mode 100644
index 0000000000000000000000000000000000000000..951570e9d8fb09751f0b2d2feffc766d7a788068
--- /dev/null
+++ b/weights/kirara-jp/added_IVF672_Flat_nprobe_1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d81665d33cf0b15b259a9142280a82869170b50fc99a70d90a4cb535b14d6115
+size 27741331
diff --git a/weights/kirara-jp/cover.png b/weights/kirara-jp/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..b3770694bc15690130684ca80219f200f49e902a
Binary files /dev/null and b/weights/kirara-jp/cover.png differ
diff --git a/weights/kirara-jp/kirara-jp.pth b/weights/kirara-jp/kirara-jp.pth
new file mode 100644
index 0000000000000000000000000000000000000000..6f48325ec973bc35364ec4be614ad6ddccc76855
--- /dev/null
+++ b/weights/kirara-jp/kirara-jp.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c444de82a81661354f96fd203f0f6535157abcb46e93bbb6bc5e19098fbdba9a
+size 55019812
diff --git a/weights/kirara-jp/total_fea.npy b/weights/kirara-jp/total_fea.npy
new file mode 100644
index 0000000000000000000000000000000000000000..aaaabc66e369a850703accd52cffebd392e0cdf3
--- /dev/null
+++ b/weights/kirara-jp/total_fea.npy
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c7c09bf1ef996bc4ec9ba26138a2baf9b4355d38a0c77b78d3a85ad445caab1f
+size 26838144
diff --git a/weights/lumine-jp/added_IVF1007_Flat_nprobe_1.index b/weights/lumine-jp/added_IVF1007_Flat_nprobe_1.index
new file mode 100644
index 0000000000000000000000000000000000000000..c1b2f41d4601a71d6ccbf3a98d6d9854eae72a58
--- /dev/null
+++ b/weights/lumine-jp/added_IVF1007_Flat_nprobe_1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:da13547487f72de87f5a36b3c6a8b6677970731f9e0727499bfe545779bdd456
+size 41575291
diff --git a/weights/lumine-jp/cover.png b/weights/lumine-jp/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..f7eaa819b98cf68c2c0c17aa0da12818dc9c058f
Binary files /dev/null and b/weights/lumine-jp/cover.png differ
diff --git a/weights/lumine-jp/lumine-jp.pth b/weights/lumine-jp/lumine-jp.pth
new file mode 100644
index 0000000000000000000000000000000000000000..c30056039951a7180eab4ed672cf5c3544887171
--- /dev/null
+++ b/weights/lumine-jp/lumine-jp.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:8c5c5ec0ff9352799da1e1a3caa422d3d7aa4385be2983820baf52812cd692fc
+size 55027589
diff --git a/weights/lumine-jp/total_fea.npy b/weights/lumine-jp/total_fea.npy
new file mode 100644
index 0000000000000000000000000000000000000000..f5c674ab770c486512019d341a9d7430e91b275e
--- /dev/null
+++ b/weights/lumine-jp/total_fea.npy
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e042138874bb7b5c0dcb24ec2470e5eaf655b8f13fd325e2b285a300f4b61e87
+size 40221824
diff --git a/weights/model_info.json b/weights/model_info.json
new file mode 100644
index 0000000000000000000000000000000000000000..fe4678217bb3fc9d1f7ff3d8c2e5dc468280267e
--- /dev/null
+++ b/weights/model_info.json
@@ -0,0 +1,145 @@
+{
+ "ayaka-jp": {
+ "enable": true,
+ "name": "ayaka-jp",
+ "title": "Kamisato Ayaka - 1000 epoch",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF823_Flat_nprobe_1.index",
+ "feature_file": "total_fea.npy",
+ "author":"Mocci24"
+ },
+ "nilou-zh": {
+ "enable": true,
+ "name": "nilou-zh",
+ "title": "Genshin Impact-Nilou",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF1939_Flat_nprobe_9.index",
+ "feature_file": "total_fea.npy"
+ },
+ "alice": {
+ "enable": true,
+ "name": "Tendou Alice",
+ "title": "Blue Archive-Tendou Alice",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF141_Flat_nprobe_4.index",
+ "feature_file": "total_fea.npy"
+
+ },
+ "teio": {
+ "enable": true,
+ "name": "Tokai Teio",
+ "title": "Uma Musume Pretty Derby-Tokai Teio",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF3421_Flat_nprobe_11.index",
+ "feature_file": "total_fea.npy",
+ "author":"Tiυχαιο"
+ },
+ "yanfei-jp": {
+ "enable": true,
+ "name": "yanfei-jp",
+ "title": "Yanfei - 500 epoch",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF1101_Flat_nprobe_1.index",
+ "feature_file": "total_fea.npy",
+ "author":"Mocci24"
+ },
+ "sucrose-jp": {
+ "enable": true,
+ "name": "sucrose-jp",
+ "title": "Sucrose - 300 epoch",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF884_Flat_nprobe_1.index",
+ "feature_file": "total_fea.npy",
+ "author":"Mocci24"
+ },
+ "yae-miko": {
+ "enable": true,
+ "name": "yae-miko",
+ "title": "Yae Miko - 300 epoch",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF929_Flat_nprobe_1.index",
+ "feature_file": "total_fea.npy",
+ "author":"Mocci24"
+ },
+ "eula-en": {
+ "enable": true,
+ "name": "eula-en",
+ "title": "Eula English",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF982_Flat_nprobe_1.index",
+ "feature_file": "total_fea.npy",
+ "author":"Tarmaz"
+ },
+ "kirara-jp": {
+ "enable": true,
+ "name": "kirara-jp",
+ "title": "Kirara - 300 epoch",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF672_Flat_nprobe_1.index",
+ "feature_file": "total_fea.npy",
+ "author":"Mocci24"
+ },
+ "hutao-jp": {
+ "enable": true,
+ "name": "hutao-jp",
+ "title": "Genshin Impact - Hutao",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF265_Flat_nprobe_5.index",
+ "feature_file": "total_fea.npy",
+ "author":"Ardha"
+ },
+ "kazuha-jp": {
+ "enable": true,
+ "name": "kazuha-jp",
+ "title": "Genshin Impact - Kazuha",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF677_Flat_nprobe_7.index",
+ "feature_file": "total_fea.npy",
+ "author":"Ardha"
+ },
+ "alhaitham": {
+ "enable": false,
+ "name": "alhaitham",
+ "title": "Genshin Impact - Alhaitham",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF519_Flat_nprobe_1.index",
+ "feature_file": "total_fea.npy",
+ "author":"Zunousen"
+ },
+ "wanderer-jp": {
+ "enable": true,
+ "name": "wanderer-jp",
+ "title": "Genshin Impact - Wanderer",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF128_Flat_nprobe_4.index",
+ "feature_file": "total_fea.npy",
+ "author":"Ardha"
+ },
+ "xiao-jp": {
+ "enable": true,
+ "name": "xiao-jp",
+ "title": "Genshin Impact - Xiao",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF233_Flat_nprobe_5.index",
+ "feature_file": "total_fea.npy",
+ "author":"Ardha"
+ },
+ "raiden-jp": {
+ "enable": true,
+ "name": "raiden-jp",
+ "title": "Genshin Impact - Raiden",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF783_Flat_nprobe_7.index",
+ "feature_file": "total_fea.npy",
+ "author":"Ardha"
+ },
+ "lumine-jp": {
+ "enable": true,
+ "name": "lumine-jp",
+ "title": "Hotaru - Lumine GI",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF1007_Flat_nprobe_1.index",
+ "feature_file": "total_fea.npy",
+ "author":"HirumiM"
+ }
+}
\ No newline at end of file
diff --git a/weights/nilou-zh/added_IVF1939_Flat_nprobe_9.index b/weights/nilou-zh/added_IVF1939_Flat_nprobe_9.index
new file mode 100644
index 0000000000000000000000000000000000000000..b1423ae39883d88421ea5db2854f8f9a73513413
--- /dev/null
+++ b/weights/nilou-zh/added_IVF1939_Flat_nprobe_9.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:8ae473318995e230ea89f0d7456604dfe58276e4694a6df8a7633b49a8698989
+size 80075083
diff --git a/weights/nilou-zh/cover.png b/weights/nilou-zh/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..3e98013d8033f303a42402f6ce094480fe34394c
Binary files /dev/null and b/weights/nilou-zh/cover.png differ
diff --git a/weights/nilou-zh/nilou-zh.pth b/weights/nilou-zh/nilou-zh.pth
new file mode 100644
index 0000000000000000000000000000000000000000..edadbb43e2e467f640b5cd895828817356ab955a
--- /dev/null
+++ b/weights/nilou-zh/nilou-zh.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:67257ff52c4d8345782ea60d6d0eb23150933ca01a3c883c44115eb0c2efbe8d
+size 55093677
diff --git a/weights/nilou-zh/total_fea.npy b/weights/nilou-zh/total_fea.npy
new file mode 100644
index 0000000000000000000000000000000000000000..f94de31e5f4bc3f219f8c8aa781addfd96a42aa4
--- /dev/null
+++ b/weights/nilou-zh/total_fea.npy
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e2d6831f28a96bf560c3bc884b57736cc5b2852001df4bc5b58677960621d6ce
+size 77468800
diff --git a/weights/raiden-jp/added_IVF783_Flat_nprobe_7.index b/weights/raiden-jp/added_IVF783_Flat_nprobe_7.index
new file mode 100644
index 0000000000000000000000000000000000000000..cdb04b02df5f6207adf94b394daca67773280427
--- /dev/null
+++ b/weights/raiden-jp/added_IVF783_Flat_nprobe_7.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:71e9568b307152547c45653c6e464a991223071933858047cb81cfbd9fbb9679
+size 32349211
diff --git a/weights/raiden-jp/cover.png b/weights/raiden-jp/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..0a279713e28624603093555dd2699a0624c9ba00
Binary files /dev/null and b/weights/raiden-jp/cover.png differ
diff --git a/weights/raiden-jp/raiden-jp.pth b/weights/raiden-jp/raiden-jp.pth
new file mode 100644
index 0000000000000000000000000000000000000000..1b119e9d8aa2a1fb863921524aad52701d394486
--- /dev/null
+++ b/weights/raiden-jp/raiden-jp.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:7483e661b095a272b0c0fb7aa77075c7359d087c8d3e3ee8c362985a3d96fdd1
+size 55027589
diff --git a/weights/raiden-jp/total_fea.npy b/weights/raiden-jp/total_fea.npy
new file mode 100644
index 0000000000000000000000000000000000000000..07ce56cea533116472165f886944ac6096cd926f
--- /dev/null
+++ b/weights/raiden-jp/total_fea.npy
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:1374d1575f9ed5145bb7ea1d093c48ebe6142b9d0ea10c7ad0fc8ac3c8d1993a
+size 31296640
diff --git a/weights/sucrose-jp/added_IVF884_Flat_nprobe_1.index b/weights/sucrose-jp/added_IVF884_Flat_nprobe_1.index
new file mode 100644
index 0000000000000000000000000000000000000000..9f15329db441300b4d408031f1e6ad1ce42acbc9
--- /dev/null
+++ b/weights/sucrose-jp/added_IVF884_Flat_nprobe_1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:8cc1bd428bcc9a7677c6c9799ad7a90aa02e33fc8116ab443fd04b964014cecd
+size 36516427
diff --git a/weights/sucrose-jp/cover.png b/weights/sucrose-jp/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..297e9dee525fcb231e1f153c2fe54405e4864aa9
Binary files /dev/null and b/weights/sucrose-jp/cover.png differ
diff --git a/weights/sucrose-jp/sucrose-jp.pth b/weights/sucrose-jp/sucrose-jp.pth
new file mode 100644
index 0000000000000000000000000000000000000000..2901ee990881e27c7547a24b073bf9259011ec8e
--- /dev/null
+++ b/weights/sucrose-jp/sucrose-jp.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:de06f5c9b36cf276c48cdc9dc98756cf2357a5bef8375c945d77ea079c208655
+size 55026095
diff --git a/weights/sucrose-jp/total_fea.npy b/weights/sucrose-jp/total_fea.npy
new file mode 100644
index 0000000000000000000000000000000000000000..0f3d0ec93b76657facd26b8700bfd578813aa33b
--- /dev/null
+++ b/weights/sucrose-jp/total_fea.npy
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:69ced72b5675af5602fbe62f63d1a2b812d7f1c306de75c2cc4b89516743c9e1
+size 35328128
diff --git a/weights/teio/added_IVF3421_Flat_nprobe_11.index b/weights/teio/added_IVF3421_Flat_nprobe_11.index
new file mode 100644
index 0000000000000000000000000000000000000000..83b3036c88b77dd34cb4bc5b201e8420ad520a7e
--- /dev/null
+++ b/weights/teio/added_IVF3421_Flat_nprobe_11.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:7ced00d65176ad0e598d6f577bf57b0d861c9822d98eb60ce2271398c75a79f4
+size 141235531
diff --git a/weights/teio/cover.png b/weights/teio/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..569cbac6319bf6da5f7d366e6d46cd7e028677ff
Binary files /dev/null and b/weights/teio/cover.png differ
diff --git a/weights/teio/teio.pth b/weights/teio/teio.pth
new file mode 100644
index 0000000000000000000000000000000000000000..0a6d5921f028e480a8248315940bcfaec5281fe5
--- /dev/null
+++ b/weights/teio/teio.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:61292a4a96b7fbf40a8310e8b036992fec80757967ec9462be9732eb65089978
+size 54996174
diff --git a/weights/teio/total_fea.npy b/weights/teio/total_fea.npy
new file mode 100644
index 0000000000000000000000000000000000000000..622268b1c9350103dfc9d5bdadf5742bbd92e22c
--- /dev/null
+++ b/weights/teio/total_fea.npy
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:5014b00074c9230b7f003b8c452ad22b2a6b44f98cec6ed147700d5ff809eaad
+size 136637568
diff --git a/weights/wanderer-jp/added_IVF128_Flat_nprobe_4.index b/weights/wanderer-jp/added_IVF128_Flat_nprobe_4.index
new file mode 100644
index 0000000000000000000000000000000000000000..ce54db39fe85ac939452aadd69cc1741f5bcd9fc
--- /dev/null
+++ b/weights/wanderer-jp/added_IVF128_Flat_nprobe_4.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:6642c9a48863247025fd9fb09e8de4ffa220ef659dff1a4a297c57bd08cf1ec4
+size 5314939
diff --git a/weights/wanderer-jp/cover.png b/weights/wanderer-jp/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..d8b070f014e92a07124cc653b587d4300a2ec571
--- /dev/null
+++ b/weights/wanderer-jp/cover.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4a9fee513b74655d476daca7c8b28bc168064c143da3e506c5f994ad8a412fe6
+size 277152
diff --git a/weights/wanderer-jp/total_fea.npy b/weights/wanderer-jp/total_fea.npy
new file mode 100644
index 0000000000000000000000000000000000000000..aca280acfcac1c9f65b4c22637d24c32e8ec2127
--- /dev/null
+++ b/weights/wanderer-jp/total_fea.npy
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:edccbafbaa8512f9970686d305eb10b4ff5f9d79ca7118d3158b8699aac1975e
+size 5142656
diff --git a/weights/wanderer-jp/wanderer-jp.pth b/weights/wanderer-jp/wanderer-jp.pth
new file mode 100644
index 0000000000000000000000000000000000000000..7f03d9fd91a830477f37ecd7cbab2abf20bd454b
--- /dev/null
+++ b/weights/wanderer-jp/wanderer-jp.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:7d2d89c3cac427a5ae0439b2cd635015f20e8d4e1d2d6c0af39daa44f6c02890
+size 55028507
diff --git a/weights/xiao-jp/added_IVF233_Flat_nprobe_5.index b/weights/xiao-jp/added_IVF233_Flat_nprobe_5.index
new file mode 100644
index 0000000000000000000000000000000000000000..a5ae5974faffe91e6980205ad1d36e26972b22c6
--- /dev/null
+++ b/weights/xiao-jp/added_IVF233_Flat_nprobe_5.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:65c124d9021bf14703a4b4446f86dc0356f8ab43c46b99efdaab183ccb42ccf8
+size 9641083
diff --git a/weights/xiao-jp/cover.png b/weights/xiao-jp/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..4e349b5ac85116df96c3373b5dc3a1ddedb05c57
--- /dev/null
+++ b/weights/xiao-jp/cover.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:3aaa97401764f849f417f53672521aa94fdfe3780580f2c584f2f6afa1bc9693
+size 197175
diff --git a/weights/xiao-jp/total_fea.npy b/weights/xiao-jp/total_fea.npy
new file mode 100644
index 0000000000000000000000000000000000000000..42737c93b5ebc486dc64ecf2f80933acd9cf8cdf
--- /dev/null
+++ b/weights/xiao-jp/total_fea.npy
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:3650e806c3e9098c4a836d138c141b2d387351765317721d2331ff3428361fbe
+size 9327744
diff --git a/weights/xiao-jp/xiao-jp.pth b/weights/xiao-jp/xiao-jp.pth
new file mode 100644
index 0000000000000000000000000000000000000000..8c3e534232a678288a9dd7e073027e83609e89bc
--- /dev/null
+++ b/weights/xiao-jp/xiao-jp.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4f85bf34a96dffe7dcaec4fb434f0ca1ed08b56784ac9ab88545ab2df8b66e1a
+size 55026095
diff --git a/weights/yae-miko/added_IVF929_Flat_nprobe_1.index b/weights/yae-miko/added_IVF929_Flat_nprobe_1.index
new file mode 100644
index 0000000000000000000000000000000000000000..095a8e31924bc56736fdc6a4910e44de326d787d
--- /dev/null
+++ b/weights/yae-miko/added_IVF929_Flat_nprobe_1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e1d2411a4d2ff343ca87af6ed441e9a5d8e710d76a7ee6819be85391a601f37b
+size 38354419
diff --git a/weights/yae-miko/cover.png b/weights/yae-miko/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..9845531ed5d52e531292fabc649332e34b4be3a0
Binary files /dev/null and b/weights/yae-miko/cover.png differ
diff --git a/weights/yae-miko/total_fea.npy b/weights/yae-miko/total_fea.npy
new file mode 100644
index 0000000000000000000000000000000000000000..5b1aa997f96561b70bf7fa4527e593fbfa8ba402
--- /dev/null
+++ b/weights/yae-miko/total_fea.npy
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:a464c55f395724d8e8c56e906f3220ba5b2f769441ca708098ad9424c58ac035
+size 37105792
diff --git a/weights/yae-miko/yae-miko.pth b/weights/yae-miko/yae-miko.pth
new file mode 100644
index 0000000000000000000000000000000000000000..3ea3ff1898eaf50353a2f79fc9772122c9af5c82
--- /dev/null
+++ b/weights/yae-miko/yae-miko.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:2b538645ca122429ea018e907c75efec8635fe617db8e343aaa69d065970590c
+size 54995587
diff --git a/weights/yanfei-jp/added_IVF1101_Flat_nprobe_1.index b/weights/yanfei-jp/added_IVF1101_Flat_nprobe_1.index
new file mode 100644
index 0000000000000000000000000000000000000000..f502aff56bfe030207c003f36434952d56d3cff7
--- /dev/null
+++ b/weights/yanfei-jp/added_IVF1101_Flat_nprobe_1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:df15a3088bae2e3ef6f032f4219b5707ee4789e1538fa342c0b26e1fda2f6aa8
+size 45450451
diff --git a/weights/yanfei-jp/cover.png b/weights/yanfei-jp/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..323684c659bc3a2c58bd2126c52f2c155ff06af8
Binary files /dev/null and b/weights/yanfei-jp/cover.png differ
diff --git a/weights/yanfei-jp/total_fea.npy b/weights/yanfei-jp/total_fea.npy
new file mode 100644
index 0000000000000000000000000000000000000000..c9e96c77219db5477bda4ca13facd8ed467d2249
--- /dev/null
+++ b/weights/yanfei-jp/total_fea.npy
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c50f682ed6d633111ec6bad2797553245aa66d11c4e38733616612b46172e6d8
+size 43970688
diff --git a/weights/yanfei-jp/yanfei-jp.pth b/weights/yanfei-jp/yanfei-jp.pth
new file mode 100644
index 0000000000000000000000000000000000000000..f348326591046ef9440434176168a4477e36003f
--- /dev/null
+++ b/weights/yanfei-jp/yanfei-jp.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:66304dfb6551d12989e09740fb0720bdf437863501b0746b7391a9cbc4026b5e
+size 55019812