Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
import argparse
|
3 |
+
import os
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
|
8 |
+
import stylegan2
|
9 |
+
from stylegan2 import utils
|
10 |
+
|
11 |
+
def generate_images(G, args):
|
12 |
+
latent_size, label_size = G.latent_size, G.label_size
|
13 |
+
device = torch.device(args.gpu[0] if args.gpu else 'cpu')
|
14 |
+
if device.index is not None:
|
15 |
+
torch.cuda.set_device(device.index)
|
16 |
+
G.to(device)
|
17 |
+
if args.truncation_psi != 1:
|
18 |
+
G.set_truncation(truncation_psi=args.truncation_psi)
|
19 |
+
if len(args.gpu) > 1:
|
20 |
+
warnings.warn(
|
21 |
+
'Noise can not be randomized based on the seed ' +
|
22 |
+
'when using more than 1 GPU device. Noise will ' +
|
23 |
+
'now be randomized from default random state.'
|
24 |
+
)
|
25 |
+
G.random_noise()
|
26 |
+
G = torch.nn.DataParallel(G, device_ids=args.gpu)
|
27 |
+
else:
|
28 |
+
noise_reference = G.static_noise()
|
29 |
+
|
30 |
+
def get_batch(seeds):
|
31 |
+
latents = []
|
32 |
+
labels = []
|
33 |
+
if len(args.gpu) <= 1:
|
34 |
+
noise_tensors = [[] for _ in noise_reference]
|
35 |
+
for seed in seeds:
|
36 |
+
rnd = np.random.RandomState(seed)
|
37 |
+
latents.append(torch.from_numpy(rnd.randn(latent_size)))
|
38 |
+
if len(args.gpu) <= 1:
|
39 |
+
for i, ref in enumerate(noise_reference):
|
40 |
+
noise_tensors[i].append(
|
41 |
+
torch.from_numpy(rnd.randn(*ref.size()[1:])))
|
42 |
+
if label_size:
|
43 |
+
labels.append(torch.tensor([rnd.randint(0, label_size)]))
|
44 |
+
latents = torch.stack(latents, dim=0).to(
|
45 |
+
device=device, dtype=torch.float32)
|
46 |
+
if labels:
|
47 |
+
labels = torch.cat(labels, dim=0).to(
|
48 |
+
device=device, dtype=torch.int64)
|
49 |
+
else:
|
50 |
+
labels = None
|
51 |
+
if len(args.gpu) <= 1:
|
52 |
+
noise_tensors = [
|
53 |
+
torch.stack(noise, dim=0).to(
|
54 |
+
device=device, dtype=torch.float32)
|
55 |
+
for noise in noise_tensors
|
56 |
+
]
|
57 |
+
else:
|
58 |
+
noise_tensors = None
|
59 |
+
return latents, labels, noise_tensors
|
60 |
+
return_images = []
|
61 |
+
for i in range(0, len(args.seeds), args.batch_size):
|
62 |
+
latents, labels, noise_tensors = get_batch(
|
63 |
+
args.seeds[i: i + args.batch_size])
|
64 |
+
if noise_tensors is not None:
|
65 |
+
G.static_noise(noise_tensors=noise_tensors)
|
66 |
+
with torch.no_grad():
|
67 |
+
generated = G(latents, labels=labels)
|
68 |
+
images = utils.tensor_to_PIL(
|
69 |
+
generated, pixel_min=args.pixel_min, pixel_max=args.pixel_max)
|
70 |
+
return_images.extend(images)
|
71 |
+
return return_images
|
72 |
+
|
73 |
+
|
74 |
+
#----------------------------------------------------------------------------
|
75 |
+
|
76 |
+
def inference(seed):
|
77 |
+
|
78 |
+
|
79 |
+
title = "TWDNEv3 CPU Generator"
|
80 |
+
description = "Gradio Demo for TWDNEv3 CPU Generator (stylegan2_pytorch port). To use it, simply put your random seed."
|
81 |
+
article = ""
|
82 |
+
gr.Interface(inference, ["number"], gr.outputs.Image(type="pil"),title=title,description=description,article=article,allow_flagging=False,allow_screenshot=False).launch()
|