import torch import argparse from models.psp import pSp from models.encoders.psp_encoders import Encoder4Editing def setup_model(checkpoint_path, device='cuda'): ckpt = torch.load(checkpoint_path, map_location='cpu') opts = ckpt['opts'] opts['checkpoint_path'] = checkpoint_path opts['device'] = device opts = argparse.Namespace(**opts) net = pSp(opts) net.eval() net = net.to(device) return net, opts def load_e4e_standalone(checkpoint_path, device='cuda'): ckpt = torch.load(checkpoint_path, map_location='cpu') opts = argparse.Namespace(**ckpt['opts']) e4e = Encoder4Editing(50, 'ir_se', opts) e4e_dict = {k.replace('encoder.', ''): v for k, v in ckpt['state_dict'].items() if k.startswith('encoder.')} e4e.load_state_dict(e4e_dict) e4e.eval() e4e = e4e.to(device) latent_avg = ckpt['latent_avg'].to(device) def add_latent_avg(model, inputs, outputs): return outputs + latent_avg.repeat(outputs.shape[0], 1, 1) e4e.register_forward_hook(add_latent_avg) return e4e