Spaces:
Runtime error
Runtime error
Hector Lopez
commited on
Commit
·
f890c24
1
Parent(s):
ab0c2de
refactor: Using streamlit again
Browse files
app.py
CHANGED
@@ -1,64 +1,75 @@
|
|
1 |
-
import
|
2 |
-
from gradio.networking import get_first_available_port
|
3 |
import PIL
|
4 |
import torch
|
5 |
-
import os
|
6 |
|
7 |
from utils import plot_img_no_mask, get_models
|
8 |
from classifier import CustomEfficientNet, CustomViT
|
9 |
from model import get_model, predict, prepare_prediction, predict_class
|
10 |
|
11 |
-
os.system('pkill -9 python')
|
12 |
-
|
13 |
DET_CKPT = 'efficientDet_icevision.ckpt'
|
14 |
CLASS_CKPT = 'class_ViT_taco_7_class.pth'
|
15 |
|
16 |
-
def waste_detector_interface(
|
17 |
-
image,
|
18 |
-
detection_threshold,
|
19 |
-
nms_threshold
|
20 |
-
):
|
21 |
-
det_model, classifier = get_models(DET_CKPT, CLASS_CKPT)
|
22 |
-
print('Getting predictions')
|
23 |
-
pred_dict = predict(det_model, image, detection_threshold)
|
24 |
-
print('Fixing the preds')
|
25 |
-
boxes, image = prepare_prediction(pred_dict, nms_threshold)
|
26 |
|
27 |
-
print('Predicting classes')
|
28 |
-
labels = predict_class(classifier, image, boxes)
|
29 |
-
print('Plotting')
|
30 |
|
31 |
-
|
32 |
|
33 |
-
|
34 |
-
gr.inputs.Image(type="pil", label="Original Image"),
|
35 |
-
gr.inputs.Number(default=0.5, label="detection_threshold"),
|
36 |
-
gr.inputs.Number(default=0.5, label="nms_threshold"),
|
37 |
-
]
|
38 |
|
39 |
-
|
40 |
-
gr.outputs.Image(type="plot", label="Prediction"),
|
41 |
-
]
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
['example_imgs/basura_1.jpg', 0.5, 0.5],
|
48 |
-
['example_imgs/basura_3.jpg', 0.5, 0.5]
|
49 |
]
|
50 |
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
|
|
|
|
1 |
+
import streamlit as st
|
|
|
2 |
import PIL
|
3 |
import torch
|
|
|
4 |
|
5 |
from utils import plot_img_no_mask, get_models
|
6 |
from classifier import CustomEfficientNet, CustomViT
|
7 |
from model import get_model, predict, prepare_prediction, predict_class
|
8 |
|
|
|
|
|
9 |
DET_CKPT = 'efficientDet_icevision.ckpt'
|
10 |
CLASS_CKPT = 'class_ViT_taco_7_class.pth'
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
|
|
|
|
|
|
13 |
|
14 |
+
st.subheader('Upload Custom Image')
|
15 |
|
16 |
+
image_file = st.file_uploader("Upload Images", type=["png","jpg","jpeg"])
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
st.subheader('Example Images')
|
|
|
|
|
19 |
|
20 |
+
example_imgs = [
|
21 |
+
'example_imgs/basura_4_2.jpg',
|
22 |
+
'example_imgs/basura_1.jpg',
|
23 |
+
'example_imgs/basura_3.jpg'
|
|
|
|
|
24 |
]
|
25 |
|
26 |
+
with st.container() as cont:
|
27 |
+
st.image(example_imgs[0], width=150, caption='1')
|
28 |
+
if st.button('Select Image', key='Image_1'):
|
29 |
+
image_file = example_imgs[0]
|
30 |
+
|
31 |
+
with st.container() as cont:
|
32 |
+
st.image(example_imgs[1], width=150, caption='2')
|
33 |
+
if st.button('Select Image', key='Image_2'):
|
34 |
+
image_file = example_imgs[1]
|
35 |
+
|
36 |
+
with st.container() as cont:
|
37 |
+
st.image(example_imgs[2], width=150, caption='2')
|
38 |
+
if st.button('Select Image', key='Image_3'):
|
39 |
+
image_file = example_imgs[2]
|
40 |
|
41 |
+
st.subheader('Detection parameters')
|
42 |
+
|
43 |
+
detection_threshold = st.slider('Detection threshold',
|
44 |
+
min_value=0.0,
|
45 |
+
max_value=1.0,
|
46 |
+
value=0.5,
|
47 |
+
step=0.1)
|
48 |
+
|
49 |
+
nms_threshold = st.slider('NMS threshold',
|
50 |
+
min_value=0.0,
|
51 |
+
max_value=1.0,
|
52 |
+
value=0.3,
|
53 |
+
step=0.1)
|
54 |
+
|
55 |
+
st.subheader('Prediction')
|
56 |
+
|
57 |
+
if image_file is not None:
|
58 |
+
det_model, classifier = get_models(DET_CKPT, CLASS_CKPT)
|
59 |
+
|
60 |
+
print('Getting predictions')
|
61 |
+
if isinstance(image_file, str):
|
62 |
+
data = image_file
|
63 |
+
else:
|
64 |
+
data = image_file.read()
|
65 |
+
pred_dict = predict(det_model, data, detection_threshold)
|
66 |
+
print('Fixing the preds')
|
67 |
+
boxes, image = prepare_prediction(pred_dict, nms_threshold)
|
68 |
+
|
69 |
+
print('Predicting classes')
|
70 |
+
labels = predict_class(classifier, image, boxes)
|
71 |
+
print('Plotting')
|
72 |
+
plot_img_no_mask(image, boxes, labels)
|
73 |
|
74 |
+
img = PIL.Image.open('img.png')
|
75 |
+
st.image(img,width=750)
|
model.py
CHANGED
@@ -39,7 +39,11 @@ def get_checkpoint(checkpoint_path : str):
|
|
39 |
|
40 |
return fixed_state_dict
|
41 |
|
42 |
-
def predict(model : object,
|
|
|
|
|
|
|
|
|
43 |
class_map = ClassMap(classes=['Waste'])
|
44 |
transforms = tfms.A.Adapter([
|
45 |
*tfms.A.resize_and_pad(512),
|
|
|
39 |
|
40 |
return fixed_state_dict
|
41 |
|
42 |
+
def predict(model : object, image : Union[str, BytesIO], detection_threshold : float):
|
43 |
+
img = PIL.Image.open(image)
|
44 |
+
#img = PIL.Image.open(BytesIO(image))
|
45 |
+
img = np.array(img)
|
46 |
+
img = PIL.Image.fromarray(img)
|
47 |
class_map = ClassMap(classes=['Waste'])
|
48 |
transforms = tfms.A.Adapter([
|
49 |
*tfms.A.resize_and_pad(512),
|
requirements.txt
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
icevision[all]
|
2 |
matplotlib
|
3 |
effdet
|
4 |
-
gradio
|
5 |
Pillow==8.4.0
|
|
|
1 |
icevision[all]
|
2 |
matplotlib
|
3 |
effdet
|
|
|
4 |
Pillow==8.4.0
|
utils.py
CHANGED
@@ -45,11 +45,10 @@ def plot_img_no_mask(image : np.ndarray, boxes : torch.Tensor, labels):
|
|
45 |
cv2.putText(image, texts[labels[i]], (x1, y1-10),
|
46 |
cv2.FONT_HERSHEY_SIMPLEX, 4, thickness=5, color=color)
|
47 |
|
48 |
-
|
49 |
plt.axis('off')
|
50 |
ax.imshow(image)
|
51 |
|
52 |
-
|
53 |
|
54 |
def get_models(
|
55 |
detection_ckpt : str,
|
|
|
45 |
cv2.putText(image, texts[labels[i]], (x1, y1-10),
|
46 |
cv2.FONT_HERSHEY_SIMPLEX, 4, thickness=5, color=color)
|
47 |
|
|
|
48 |
plt.axis('off')
|
49 |
ax.imshow(image)
|
50 |
|
51 |
+
fig.savefig("img.png", bbox_inches='tight')
|
52 |
|
53 |
def get_models(
|
54 |
detection_ckpt : str,
|