Spaces:
Runtime error
Runtime error
import streamlit as st | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import cv2 | |
import PIL | |
from model import get_model, predict, prepare_prediction | |
print('Creating the model') | |
model = get_model('checkpoint.ckpt') | |
def plot_img_no_mask(image, boxes): | |
# Show image | |
boxes = boxes.cpu().detach().numpy().astype(np.int32) | |
fig, ax = plt.subplots(1, 1, figsize=(12, 6)) | |
for i, box in enumerate(boxes): | |
[x1, y1, x2, y2] = np.array(box).astype(int) | |
# Si no se hace la copia da error en cv2.rectangle | |
image = np.array(image).copy() | |
pt1 = (x1, y1) | |
pt2 = (x2, y2) | |
cv2.rectangle(image, pt1, pt2, (220,0,0), thickness=5) | |
plt.axis('off') | |
ax.imshow(image) | |
fig.savefig("img.png", bbox_inches='tight') | |
st.subheader('Upload Custom Image') | |
image_file = st.file_uploader("Upload Images", type=["png","jpg","jpeg"]) | |
st.subheader('Example Images') | |
example_imgs = [ | |
'example_imgs/basura_4_2.jpg', | |
'example_imgs/basura_1.jpg', | |
'example_imgs/basura_3.jpg' | |
] | |
with st.container() as cont: | |
st.image(example_imgs[0], width=150, caption='1') | |
if st.button('Select Image', key='Image_1'): | |
image_file = example_imgs[0] | |
with st.container() as cont: | |
st.image(example_imgs[1], width=150, caption='2') | |
if st.button('Select Image', key='Image_2'): | |
image_file = example_imgs[1] | |
with st.container() as cont: | |
st.image(example_imgs[2], width=150, caption='2') | |
if st.button('Select Image', key='Image_3'): | |
image_file = example_imgs[2] | |
st.subheader('Detection parameters') | |
detection_threshold = st.slider('Detection threshold', | |
min_value=0.0, | |
max_value=1.0, | |
value=0.5, | |
step=0.1) | |
nms_threshold = st.slider('NMS threshold', | |
min_value=0.0, | |
max_value=1.0, | |
value=0.3, | |
step=0.1) | |
st.subheader('Prediction') | |
if image_file is not None: | |
print('Getting predictions') | |
if isinstance(image_file, str): | |
data = image_file | |
else: | |
data = image_file.read() | |
pred_dict = predict(model, data, detection_threshold) | |
print('Fixing the preds') | |
boxes, image = prepare_prediction(pred_dict, nms_threshold) | |
print('Plotting') | |
plot_img_no_mask(image, boxes) | |
img = PIL.Image.open('img.png') | |
st.image(img,width=750) |