insta-maker-2 / app.py
hivecorp's picture
Update app.py
b2e635f verified
raw
history blame
6.35 kB
import gradio as gr
from pydub import AudioSegment
import edge_tts
import os
import asyncio
import uuid
import re
def get_audio_length(audio_file):
audio = AudioSegment.from_file(audio_file)
return len(audio) / 1000
def format_time_ms(milliseconds):
seconds, ms = divmod(int(milliseconds), 1000)
mins, secs = divmod(seconds, 60)
hrs, mins = divmod(mins, 60)
return f"{hrs:02}:{mins:02}:{secs:02},{ms:03}"
def smart_text_split(text, words_per_line, lines_per_segment):
# First split by major punctuation (periods, exclamation marks, question marks)
sentences = re.split(r'([.!?]+)', text)
# Recombine sentences with their punctuation
sentences = [''.join(i) for i in zip(sentences[::2], sentences[1::2] + [''])]
segments = []
current_segment = []
current_line = []
for sentence in sentences:
# Split sentence into words
words = sentence.strip().split()
for word in words:
current_line.append(word)
# Check if current line has reached words_per_line
if len(current_line) >= words_per_line:
current_segment.append(' '.join(current_line))
current_line = []
# Check if current segment has reached lines_per_segment
if len(current_segment) >= lines_per_segment:
segments.append('\n'.join(current_segment))
current_segment = []
# If there are words in current_line, add them as a line
if current_line:
current_segment.append(' '.join(current_line))
current_line = []
# Check if we should start a new segment at sentence boundary
if len(current_segment) >= lines_per_segment:
segments.append('\n'.join(current_segment))
current_segment = []
# Add any remaining lines
if current_segment:
segments.append('\n'.join(current_segment))
return segments
async def generate_accurate_srt(text, voice, rate, pitch, words_per_line, lines_per_segment):
segments = smart_text_split(text, words_per_line, lines_per_segment)
srt_content = ""
combined_audio = AudioSegment.empty()
current_time = 0
for idx, segment in enumerate(segments, 1):
# Generate audio for this segment
audio_file = f"temp_segment_{idx}.wav"
tts = edge_tts.Communicate(segment, voice, rate=rate, pitch=pitch)
await tts.save(audio_file)
# Get segment duration
segment_audio = AudioSegment.from_file(audio_file)
segment_duration = len(segment_audio)
# Add to SRT content with precise timing
srt_content += f"{idx}\n"
srt_content += f"{format_time_ms(current_time)} --> {format_time_ms(current_time + segment_duration)}\n"
srt_content += segment + "\n\n"
# Update timing and combine audio
current_time += segment_duration
combined_audio += segment_audio
# Cleanup
os.remove(audio_file)
# Export final files
unique_id = uuid.uuid4()
audio_path = f"final_audio_{unique_id}.mp3"
srt_path = f"final_subtitles_{unique_id}.srt"
combined_audio.export(audio_path, format="mp3", bitrate="320k")
with open(srt_path, "w", encoding='utf-8') as f:
f.write(srt_content)
return srt_path, audio_path
async def process_text(text, pitch, rate, voice, words_per_line, lines_per_segment):
pitch_str = f"{pitch}Hz" if pitch != 0 else "0Hz"
rate_str = f"{'+' if rate > 0 else ''}{rate}%"
srt_path, audio_path = await generate_accurate_srt(
text,
voice_options[voice],
rate_str,
pitch_str,
words_per_line,
lines_per_segment
)
return srt_path, audio_path, audio_path
# Voice options dictionary (same as before)
voice_options = {
"Andrew Male": "en-US-AndrewNeural",
"Jenny Female": "en-US-JennyNeural",
"Guy Male": "en-US-GuyNeural",
"Ana Female": "en-US-AnaNeural",
"Aria Female": "en-US-AriaNeural",
"Brian Male": "en-US-BrianNeural",
"Christopher Male": "en-US-ChristopherNeural",
"Eric Male": "en-US-EricNeural",
"Michelle Male": "en-US-MichelleNeural",
"Roger Male": "en-US-RogerNeural",
"Natasha Female": "en-AU-NatashaNeural",
"William Male": "en-AU-WilliamNeural",
"Clara Female": "en-CA-ClaraNeural",
"Liam Female ": "en-CA-LiamNeural",
"Libby Female": "en-GB-LibbyNeural",
"Maisie": "en-GB-MaisieNeural",
"Ryan": "en-GB-RyanNeural",
"Sonia": "en-GB-SoniaNeural",
"Thomas": "en-GB-ThomasNeural",
"Sam": "en-HK-SamNeural",
"Yan": "en-HK-YanNeural",
"Connor": "en-IE-ConnorNeural",
"Emily": "en-IE-EmilyNeural",
"Neerja": "en-IN-NeerjaNeural",
"Prabhat": "en-IN-PrabhatNeural",
"Asilia": "en-KE-AsiliaNeural",
"Chilemba": "en-KE-ChilembaNeural",
"Abeo": "en-NG-AbeoNeural",
"Ezinne": "en-NG-EzinneNeural",
"Mitchell": "en-NZ-MitchellNeural",
"James": "en-PH-JamesNeural",
"Rosa": "en-PH-RosaNeural",
"Luna": "en-SG-LunaNeural",
"Wayne": "en-SG-WayneNeural",
"Elimu": "en-TZ-ElimuNeural",
"Imani": "en-TZ-ImaniNeural",
"Leah": "en-ZA-LeahNeural",
"Luke": "en-ZA-LukeNeural"
# Add other voices here...
}
# Create Gradio interface
app = gr.Interface(
fn=process_text,
inputs=[
gr.Textbox(label="Enter Text", lines=10),
gr.Slider(label="Pitch Adjustment (Hz)", minimum=-20, maximum=20, value=0, step=1),
gr.Slider(label="Rate Adjustment (%)", minimum=-50, maximum=50, value=0, step=1),
gr.Dropdown(label="Select Voice", choices=list(voice_options.keys()), value="Jenny Female"),
gr.Slider(label="Words per Line", minimum=1, maximum=15, value=8, step=1),
gr.Slider(label="Lines per Segment", minimum=1, maximum=5, value=2, step=1)
],
outputs=[
gr.File(label="Download SRT"),
gr.File(label="Download Audio"),
gr.Audio(label="Preview Audio")
],
title="Advanced TTS with Configurable SRT Generation",
description="Generate perfectly synchronized audio and subtitles with custom segmentation control."
)
app.launch()