insta-maker-2 / app.py
hivecorp's picture
Create app.py
0a83152 verified
raw
history blame
3.85 kB
import gradio as gr
import edge_tts
import os
import asyncio
import re
from datetime import timedelta
from pydub import AudioSegment # Requires `pydub`
# Split text into 500-word batches for large scripts
def split_text(text, max_words=500):
words = text.split()
return [' '.join(words[i:i + max_words]) for i in range(0, len(words), max_words)]
# Split batch into SRT sections (e.g., 8-10 words per section)
def generate_srt_sections(text, words_per_segment=8):
words = re.split(r'(\s+)', text) # Split with spaces to keep punctuation
srt_sections = []
section_text = []
for word in words:
section_text.append(word)
if len(section_text) >= words_per_segment or word.endswith(('.', '!', '?')):
srt_sections.append(''.join(section_text).strip())
section_text = []
if section_text:
srt_sections.append(''.join(section_text).strip())
return srt_sections
# Generate audio for a single SRT section and return its length
async def generate_audio_for_section(text, filename):
communicate = edge_tts.Communicate(text, "en-US-GuyNeural")
await communicate.save(filename)
audio = AudioSegment.from_file(filename)
return len(audio) / 1000 # Duration in seconds
# Create accurate SRT for a batch with cross-check mechanism
def generate_accurate_srt(batch_text, estimated_rate=0.5):
sections = generate_srt_sections(batch_text)
srt_content = ""
index = 1
start_time = 0.0
for section in sections:
# Generate and cross-check audio for the section
audio_file = f"temp_audio_{index}.mp3"
asyncio.run(generate_audio_for_section(section, audio_file))
# Measure actual audio length for precise timing
actual_length = get_audio_length(audio_file)
end_time = start_time + actual_length
# Create SRT format for each section
start_timestamp = str(timedelta(seconds=start_time))
end_timestamp = str(timedelta(seconds=end_time))
srt_content += f"{index}\n{start_timestamp} --> {end_timestamp}\n{section}\n\n"
start_time = end_time
index += 1
return srt_content
# Batch processing with section-wise cross-checking
def batch_process_srt_and_audio(script):
batches = split_text(script, max_words=500)
final_srt_content = ""
audio_files = []
for batch_index, batch_text in enumerate(batches):
# Generate precise SRT for each batch with individual section cross-checking
srt_content = generate_accurate_srt(batch_text)
final_srt_content += srt_content
# Generate final batch audio and store
batch_audio_file = f"batch_audio_{batch_index}.mp3"
asyncio.run(generate_audio_for_section(batch_text, batch_audio_file))
audio_files.append(batch_audio_file)
# Save final SRT file
final_srt_path = "final_output.srt"
with open(final_srt_path, "w") as f:
f.write(final_srt_content)
# Combine all batch audio files
final_audio_path = "final_combined_audio.mp3"
combine_audio_files(audio_files, final_audio_path)
return final_srt_path, final_audio_path
# Combine audio files into one output file
def combine_audio_files(audio_files, output_file):
combined = AudioSegment.empty()
for file in audio_files:
combined += AudioSegment.from_file(file)
combined.export(output_file, format="mp3")
# Gradio Interface
app = gr.Interface(
fn=batch_process_srt_and_audio,
inputs=gr.Textbox(lines=10, label="Input Script"),
outputs=[gr.File(label="Download SRT"), gr.File(label="Download Audio")],
title="Accurate Batch SRT & Audio Generator with Cross-Check",
description="Enter a script to generate synchronized SRT and audio files with section-wise accuracy."
)
if __name__ == "__main__":
app.launch()