insta-maker-2 / app.py
hivecorp's picture
Update app.py
3a1afda verified
raw
history blame
7.76 kB
import gradio as gr
from pydub import AudioSegment
import edge_tts
import os
import asyncio
import uuid
import re
from concurrent.futures import ThreadPoolExecutor
from typing import List, Tuple
import math
def get_audio_length(audio_file):
audio = AudioSegment.from_file(audio_file)
return len(audio) / 1000
def format_time_ms(milliseconds):
seconds, ms = divmod(int(milliseconds), 1000)
mins, secs = divmod(seconds, 60)
hrs, mins = divmod(mins, 60)
return f"{hrs:02}:{mins:02}:{secs:02},{ms:03}"
def smart_text_split(text, words_per_line, lines_per_segment):
# First split by major punctuation (periods, exclamation marks, question marks)
sentences = re.split(r'([.!?]+)', text)
# Recombine sentences with their punctuation
sentences = [''.join(i) for i in zip(sentences[::2], sentences[1::2] + [''])]
segments = []
current_segment = []
current_line = []
for sentence in sentences:
# Split sentence into words
words = sentence.strip().split()
for word in words:
current_line.append(word)
# Check if current line has reached words_per_line
if len(current_line) >= words_per_line:
current_segment.append(' '.join(current_line))
current_line = []
# Check if current segment has reached lines_per_segment
if len(current_segment) >= lines_per_segment:
segments.append('\n'.join(current_segment))
current_segment = []
# If there are words in current_line, add them as a line
if current_line:
current_segment.append(' '.join(current_line))
current_line = []
# Check if we should start a new segment at sentence boundary
if len(current_segment) >= lines_per_segment:
segments.append('\n'.join(current_segment))
current_segment = []
# Add any remaining lines
if current_segment:
segments.append('\n'.join(current_segment))
return segments
async def process_segment(segment: str, idx: int, voice: str, rate: str, pitch: str) -> Tuple[str, AudioSegment, int]:
"""Process a single segment concurrently"""
audio_file = f"temp_segment_{idx}_{uuid.uuid4()}.wav"
try:
tts = edge_tts.Communicate(segment, voice, rate=rate, pitch=pitch)
await tts.save(audio_file)
segment_audio = AudioSegment.from_file(audio_file)
segment_duration = len(segment_audio)
srt_content = f"{idx}\n"
return srt_content, segment_audio, segment_duration
finally:
if os.path.exists(audio_file):
os.remove(audio_file)
async def process_chunk_parallel(chunks: List[str], start_idx: int, voice: str, rate: str, pitch: str) -> Tuple[str, AudioSegment]:
"""Process a chunk of segments in parallel"""
tasks = [
process_segment(segment, i + start_idx, voice, rate, pitch)
for i, segment in enumerate(chunks, 1)
]
results = await asyncio.gather(*tasks)
combined_audio = AudioSegment.empty()
srt_content = ""
current_time = 0
for srt_part, audio_part, duration in results:
srt_content += srt_part
srt_content += f"{format_time_ms(current_time)} --> {format_time_ms(current_time + duration)}\n"
srt_content += chunks[len(combined_audio.get_dc_offset())] + "\n\n"
combined_audio += audio_part
current_time += duration
return srt_content, combined_audio
async def generate_accurate_srt(text, voice, rate, pitch, words_per_line, lines_per_segment):
segments = smart_text_split(text, words_per_line, lines_per_segment)
# Split segments into chunks for parallel processing
chunk_size = 10 # Process 10 segments at a time
chunks = [segments[i:i + chunk_size] for i in range(0, len(segments), chunk_size)]
final_srt = ""
final_audio = AudioSegment.empty()
# Process chunks in parallel
chunk_tasks = []
for i, chunk in enumerate(chunks):
start_idx = i * chunk_size + 1
task = process_chunk_parallel(chunk, start_idx, voice, rate, pitch)
chunk_tasks.append(task)
# Gather results
chunk_results = await asyncio.gather(*chunk_tasks)
# Combine results
for srt_content, audio_content in chunk_results:
final_srt += srt_content
final_audio += audio_content
# Export final files
unique_id = uuid.uuid4()
audio_path = f"final_audio_{unique_id}.mp3"
srt_path = f"final_subtitles_{unique_id}.srt"
final_audio.export(audio_path, format="mp3", bitrate="320k")
with open(srt_path, "w", encoding='utf-8') as f:
f.write(final_srt)
return srt_path, audio_path
async def process_text(text, pitch, rate, voice, words_per_line, lines_per_segment):
pitch_str = f"{pitch}Hz" if pitch != 0 else "0Hz"
rate_str = f"{'+' if rate > 0 else ''}{rate}%"
srt_path, audio_path = await generate_accurate_srt(
text,
voice_options[voice],
rate_str,
pitch_str,
words_per_line,
lines_per_segment
)
return srt_path, audio_path, audio_path
# Voice options dictionary (same as before)
voice_options = {
"Andrew Male": "en-US-AndrewNeural",
"Jenny Female": "en-US-JennyNeural",
"Guy Male": "en-US-GuyNeural",
"Ana Female": "en-US-AnaNeural",
"Aria Female": "en-US-AriaNeural",
"Brian Male": "en-US-BrianNeural",
"Christopher Male": "en-US-ChristopherNeural",
"Eric Male": "en-US-EricNeural",
"Michelle Male": "en-US-MichelleNeural",
"Roger Male": "en-US-RogerNeural",
"Natasha Female": "en-AU-NatashaNeural",
"William Male": "en-AU-WilliamNeural",
"Clara Female": "en-CA-ClaraNeural",
"Liam Female ": "en-CA-LiamNeural",
"Libby Female": "en-GB-LibbyNeural",
"Maisie": "en-GB-MaisieNeural",
"Ryan": "en-GB-RyanNeural",
"Sonia": "en-GB-SoniaNeural",
"Thomas": "en-GB-ThomasNeural",
"Sam": "en-HK-SamNeural",
"Yan": "en-HK-YanNeural",
"Connor": "en-IE-ConnorNeural",
"Emily": "en-IE-EmilyNeural",
"Neerja": "en-IN-NeerjaNeural",
"Prabhat": "en-IN-PrabhatNeural",
"Asilia": "en-KE-AsiliaNeural",
"Chilemba": "en-KE-ChilembaNeural",
"Abeo": "en-NG-AbeoNeural",
"Ezinne": "en-NG-EzinneNeural",
"Mitchell": "en-NZ-MitchellNeural",
"James": "en-PH-JamesNeural",
"Rosa": "en-PH-RosaNeural",
"Luna": "en-SG-LunaNeural",
"Wayne": "en-SG-WayneNeural",
"Elimu": "en-TZ-ElimuNeural",
"Imani": "en-TZ-ImaniNeural",
"Leah": "en-ZA-LeahNeural",
"Luke": "en-ZA-LukeNeural"
# Add other voices here...
}
# Create Gradio interface
app = gr.Interface(
fn=process_text,
inputs=[
gr.Textbox(label="Enter Text", lines=10),
gr.Slider(label="Pitch Adjustment (Hz)", minimum=-20, maximum=20, value=0, step=1),
gr.Slider(label="Rate Adjustment (%)", minimum=-50, maximum=50, value=0, step=1),
gr.Dropdown(label="Select Voice", choices=list(voice_options.keys()), value="Jenny Female"),
gr.Slider(label="Words per Line", minimum=1, maximum=15, value=8, step=1),
gr.Slider(label="Lines per Segment", minimum=1, maximum=5, value=2, step=1)
],
outputs=[
gr.File(label="Download SRT"),
gr.File(label="Download Audio"),
gr.Audio(label="Preview Audio")
],
title="Advanced TTS with Configurable SRT Generation",
description="Generate perfectly synchronized audio and subtitles with custom segmentation control."
)
app.launch()