Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load the model and tokenizer
|
6 |
+
model_name = "himanshubeniwal/bert_lf_bond"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
9 |
+
|
10 |
+
def predict_bond(text):
|
11 |
+
# Tokenize the input text
|
12 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512, padding=True)
|
13 |
+
|
14 |
+
# Get model prediction
|
15 |
+
with torch.no_grad():
|
16 |
+
outputs = model(**inputs)
|
17 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
18 |
+
predicted_class = torch.argmax(predictions).item()
|
19 |
+
confidence = predictions[0][predicted_class].item()
|
20 |
+
|
21 |
+
# Get the label mapping (you may need to adjust these based on your model's specific labels)
|
22 |
+
labels = ["Negative", "Positive"] # Replace with your actual class labels
|
23 |
+
|
24 |
+
predicted_label = labels[predicted_class]
|
25 |
+
confidence_percentage = f"{confidence * 100:.2f}%"
|
26 |
+
|
27 |
+
return {
|
28 |
+
"Predicted Class": predicted_label,
|
29 |
+
"Confidence": confidence_percentage
|
30 |
+
}
|
31 |
+
|
32 |
+
# Create the Gradio interface
|
33 |
+
iface = gr.Interface(
|
34 |
+
fn=predict_bond,
|
35 |
+
inputs=gr.Textbox(lines=5, label="Enter bond-related text"),
|
36 |
+
outputs=gr.JSON(label="Prediction Results"),
|
37 |
+
title="James Bond Classification Model",
|
38 |
+
description="This model classifies bond-related text using a fine-tuned BERT model.",
|
39 |
+
examples=[
|
40 |
+
["I love the James Bond movies!"],
|
41 |
+
["I hate the James Bond movies. "]
|
42 |
+
]
|
43 |
+
)
|
44 |
+
|
45 |
+
# Launch the interface
|
46 |
+
if __name__ == "__main__":
|
47 |
+
iface.launch()
|