Spaces:
Runtime error
Runtime error
Upload waveunet.py
Browse files- model/waveunet.py +233 -0
model/waveunet.py
ADDED
|
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
from model.crop import centre_crop
|
| 5 |
+
from model.resample import Resample1d
|
| 6 |
+
from model.conv import ConvLayer
|
| 7 |
+
|
| 8 |
+
class UpsamplingBlock(nn.Module):
|
| 9 |
+
def __init__(self, n_inputs, n_shortcut, n_outputs, kernel_size, stride, depth, conv_type, res):
|
| 10 |
+
super(UpsamplingBlock, self).__init__()
|
| 11 |
+
assert(stride > 1)
|
| 12 |
+
|
| 13 |
+
# CONV 1 for UPSAMPLING
|
| 14 |
+
if res == "fixed":
|
| 15 |
+
self.upconv = Resample1d(n_inputs, 15, stride, transpose=True)
|
| 16 |
+
else:
|
| 17 |
+
self.upconv = ConvLayer(n_inputs, n_inputs, kernel_size, stride, conv_type, transpose=True)
|
| 18 |
+
|
| 19 |
+
self.pre_shortcut_convs = nn.ModuleList([ConvLayer(n_inputs, n_outputs, kernel_size, 1, conv_type)] +
|
| 20 |
+
[ConvLayer(n_outputs, n_outputs, kernel_size, 1, conv_type) for _ in range(depth - 1)])
|
| 21 |
+
|
| 22 |
+
# CONVS to combine high- with low-level information (from shortcut)
|
| 23 |
+
self.post_shortcut_convs = nn.ModuleList([ConvLayer(n_outputs + n_shortcut, n_outputs, kernel_size, 1, conv_type)] +
|
| 24 |
+
[ConvLayer(n_outputs, n_outputs, kernel_size, 1, conv_type) for _ in range(depth - 1)])
|
| 25 |
+
|
| 26 |
+
def forward(self, x, shortcut):
|
| 27 |
+
# UPSAMPLE HIGH-LEVEL FEATURES
|
| 28 |
+
upsampled = self.upconv(x)
|
| 29 |
+
|
| 30 |
+
for conv in self.pre_shortcut_convs:
|
| 31 |
+
upsampled = conv(upsampled)
|
| 32 |
+
|
| 33 |
+
# Prepare shortcut connection
|
| 34 |
+
combined = centre_crop(shortcut, upsampled)
|
| 35 |
+
|
| 36 |
+
# Combine high- and low-level features
|
| 37 |
+
for conv in self.post_shortcut_convs:
|
| 38 |
+
combined = conv(torch.cat([combined, centre_crop(upsampled, combined)], dim=1))
|
| 39 |
+
return combined
|
| 40 |
+
|
| 41 |
+
def get_output_size(self, input_size):
|
| 42 |
+
curr_size = self.upconv.get_output_size(input_size)
|
| 43 |
+
|
| 44 |
+
# Upsampling convs
|
| 45 |
+
for conv in self.pre_shortcut_convs:
|
| 46 |
+
curr_size = conv.get_output_size(curr_size)
|
| 47 |
+
|
| 48 |
+
# Combine convolutions
|
| 49 |
+
for conv in self.post_shortcut_convs:
|
| 50 |
+
curr_size = conv.get_output_size(curr_size)
|
| 51 |
+
|
| 52 |
+
return curr_size
|
| 53 |
+
|
| 54 |
+
class DownsamplingBlock(nn.Module):
|
| 55 |
+
def __init__(self, n_inputs, n_shortcut, n_outputs, kernel_size, stride, depth, conv_type, res):
|
| 56 |
+
super(DownsamplingBlock, self).__init__()
|
| 57 |
+
assert(stride > 1)
|
| 58 |
+
|
| 59 |
+
self.kernel_size = kernel_size
|
| 60 |
+
self.stride = stride
|
| 61 |
+
|
| 62 |
+
# CONV 1
|
| 63 |
+
self.pre_shortcut_convs = nn.ModuleList([ConvLayer(n_inputs, n_shortcut, kernel_size, 1, conv_type)] +
|
| 64 |
+
[ConvLayer(n_shortcut, n_shortcut, kernel_size, 1, conv_type) for _ in range(depth - 1)])
|
| 65 |
+
|
| 66 |
+
self.post_shortcut_convs = nn.ModuleList([ConvLayer(n_shortcut, n_outputs, kernel_size, 1, conv_type)] +
|
| 67 |
+
[ConvLayer(n_outputs, n_outputs, kernel_size, 1, conv_type) for _ in
|
| 68 |
+
range(depth - 1)])
|
| 69 |
+
|
| 70 |
+
# CONV 2 with decimation
|
| 71 |
+
if res == "fixed":
|
| 72 |
+
self.downconv = Resample1d(n_outputs, 15, stride) # Resampling with fixed-size sinc lowpass filter
|
| 73 |
+
else:
|
| 74 |
+
self.downconv = ConvLayer(n_outputs, n_outputs, kernel_size, stride, conv_type)
|
| 75 |
+
|
| 76 |
+
def forward(self, x):
|
| 77 |
+
# PREPARING SHORTCUT FEATURES
|
| 78 |
+
shortcut = x
|
| 79 |
+
for conv in self.pre_shortcut_convs:
|
| 80 |
+
shortcut = conv(shortcut)
|
| 81 |
+
|
| 82 |
+
# PREPARING FOR DOWNSAMPLING
|
| 83 |
+
out = shortcut
|
| 84 |
+
for conv in self.post_shortcut_convs:
|
| 85 |
+
out = conv(out)
|
| 86 |
+
|
| 87 |
+
# DOWNSAMPLING
|
| 88 |
+
out = self.downconv(out)
|
| 89 |
+
|
| 90 |
+
return out, shortcut
|
| 91 |
+
|
| 92 |
+
def get_input_size(self, output_size):
|
| 93 |
+
curr_size = self.downconv.get_input_size(output_size)
|
| 94 |
+
|
| 95 |
+
for conv in reversed(self.post_shortcut_convs):
|
| 96 |
+
curr_size = conv.get_input_size(curr_size)
|
| 97 |
+
|
| 98 |
+
for conv in reversed(self.pre_shortcut_convs):
|
| 99 |
+
curr_size = conv.get_input_size(curr_size)
|
| 100 |
+
return curr_size
|
| 101 |
+
|
| 102 |
+
class Waveunet(nn.Module):
|
| 103 |
+
def __init__(self, num_inputs, num_channels, num_outputs, instruments, kernel_size, target_output_size, conv_type, res, separate=False, depth=1, strides=2):
|
| 104 |
+
super(Waveunet, self).__init__()
|
| 105 |
+
|
| 106 |
+
self.num_levels = len(num_channels)
|
| 107 |
+
self.strides = strides
|
| 108 |
+
self.kernel_size = kernel_size
|
| 109 |
+
self.num_inputs = num_inputs
|
| 110 |
+
self.num_outputs = num_outputs
|
| 111 |
+
self.depth = depth
|
| 112 |
+
self.instruments = instruments
|
| 113 |
+
self.separate = separate
|
| 114 |
+
|
| 115 |
+
# Only odd filter kernels allowed
|
| 116 |
+
assert(kernel_size % 2 == 1)
|
| 117 |
+
|
| 118 |
+
self.waveunets = nn.ModuleDict()
|
| 119 |
+
|
| 120 |
+
model_list = instruments if separate else ["ALL"]
|
| 121 |
+
# Create a model for each source if we separate sources separately, otherwise only one (model_list=["ALL"])
|
| 122 |
+
for instrument in model_list:
|
| 123 |
+
module = nn.Module()
|
| 124 |
+
|
| 125 |
+
module.downsampling_blocks = nn.ModuleList()
|
| 126 |
+
module.upsampling_blocks = nn.ModuleList()
|
| 127 |
+
|
| 128 |
+
for i in range(self.num_levels - 1):
|
| 129 |
+
in_ch = num_inputs if i == 0 else num_channels[i]
|
| 130 |
+
|
| 131 |
+
module.downsampling_blocks.append(
|
| 132 |
+
DownsamplingBlock(in_ch, num_channels[i], num_channels[i+1], kernel_size, strides, depth, conv_type, res))
|
| 133 |
+
|
| 134 |
+
for i in range(0, self.num_levels - 1):
|
| 135 |
+
module.upsampling_blocks.append(
|
| 136 |
+
UpsamplingBlock(num_channels[-1-i], num_channels[-2-i], num_channels[-2-i], kernel_size, strides, depth, conv_type, res))
|
| 137 |
+
|
| 138 |
+
module.bottlenecks = nn.ModuleList(
|
| 139 |
+
[ConvLayer(num_channels[-1], num_channels[-1], kernel_size, 1, conv_type) for _ in range(depth)])
|
| 140 |
+
|
| 141 |
+
# Output conv
|
| 142 |
+
outputs = num_outputs if separate else num_outputs * len(instruments)
|
| 143 |
+
module.output_conv = nn.Conv1d(num_channels[0], outputs, 1)
|
| 144 |
+
|
| 145 |
+
self.waveunets[instrument] = module
|
| 146 |
+
|
| 147 |
+
self.set_output_size(target_output_size)
|
| 148 |
+
|
| 149 |
+
def set_output_size(self, target_output_size):
|
| 150 |
+
self.target_output_size = target_output_size
|
| 151 |
+
|
| 152 |
+
self.input_size, self.output_size = self.check_padding(target_output_size)
|
| 153 |
+
print("Using valid convolutions with " + str(self.input_size) + " inputs and " + str(self.output_size) + " outputs")
|
| 154 |
+
|
| 155 |
+
assert((self.input_size - self.output_size) % 2 == 0)
|
| 156 |
+
self.shapes = {"output_start_frame" : (self.input_size - self.output_size) // 2,
|
| 157 |
+
"output_end_frame" : (self.input_size - self.output_size) // 2 + self.output_size,
|
| 158 |
+
"output_frames" : self.output_size,
|
| 159 |
+
"input_frames" : self.input_size}
|
| 160 |
+
|
| 161 |
+
def check_padding(self, target_output_size):
|
| 162 |
+
# Ensure number of outputs covers a whole number of cycles so each output in the cycle is weighted equally during training
|
| 163 |
+
bottleneck = 1
|
| 164 |
+
|
| 165 |
+
while True:
|
| 166 |
+
out = self.check_padding_for_bottleneck(bottleneck, target_output_size)
|
| 167 |
+
if out is not False:
|
| 168 |
+
return out
|
| 169 |
+
bottleneck += 1
|
| 170 |
+
|
| 171 |
+
def check_padding_for_bottleneck(self, bottleneck, target_output_size):
|
| 172 |
+
module = self.waveunets[[k for k in self.waveunets.keys()][0]]
|
| 173 |
+
try:
|
| 174 |
+
curr_size = bottleneck
|
| 175 |
+
for idx, block in enumerate(module.upsampling_blocks):
|
| 176 |
+
curr_size = block.get_output_size(curr_size)
|
| 177 |
+
output_size = curr_size
|
| 178 |
+
|
| 179 |
+
# Bottleneck-Conv
|
| 180 |
+
curr_size = bottleneck
|
| 181 |
+
for block in reversed(module.bottlenecks):
|
| 182 |
+
curr_size = block.get_input_size(curr_size)
|
| 183 |
+
for idx, block in enumerate(reversed(module.downsampling_blocks)):
|
| 184 |
+
curr_size = block.get_input_size(curr_size)
|
| 185 |
+
|
| 186 |
+
assert(output_size >= target_output_size)
|
| 187 |
+
return curr_size, output_size
|
| 188 |
+
except AssertionError as e:
|
| 189 |
+
return False
|
| 190 |
+
|
| 191 |
+
def forward_module(self, x, module):
|
| 192 |
+
'''
|
| 193 |
+
A forward pass through a single Wave-U-Net (multiple Wave-U-Nets might be used, one for each source)
|
| 194 |
+
:param x: Input mix
|
| 195 |
+
:param module: Network module to be used for prediction
|
| 196 |
+
:return: Source estimates
|
| 197 |
+
'''
|
| 198 |
+
shortcuts = []
|
| 199 |
+
out = x
|
| 200 |
+
|
| 201 |
+
# DOWNSAMPLING BLOCKS
|
| 202 |
+
for block in module.downsampling_blocks:
|
| 203 |
+
out, short = block(out)
|
| 204 |
+
shortcuts.append(short)
|
| 205 |
+
|
| 206 |
+
# BOTTLENECK CONVOLUTION
|
| 207 |
+
for conv in module.bottlenecks:
|
| 208 |
+
out = conv(out)
|
| 209 |
+
|
| 210 |
+
# UPSAMPLING BLOCKS
|
| 211 |
+
for idx, block in enumerate(module.upsampling_blocks):
|
| 212 |
+
out = block(out, shortcuts[-1 - idx])
|
| 213 |
+
|
| 214 |
+
# OUTPUT CONV
|
| 215 |
+
out = module.output_conv(out)
|
| 216 |
+
if not self.training: # At test time clip predictions to valid amplitude range
|
| 217 |
+
out = out.clamp(min=-1.0, max=1.0)
|
| 218 |
+
return out
|
| 219 |
+
|
| 220 |
+
def forward(self, x, inst=None):
|
| 221 |
+
curr_input_size = x.shape[-1]
|
| 222 |
+
assert(curr_input_size == self.input_size) # User promises to feed the proper input himself, to get the pre-calculated (NOT the originally desired) output size
|
| 223 |
+
|
| 224 |
+
if self.separate:
|
| 225 |
+
return {inst : self.forward_module(x, self.waveunets[inst])}
|
| 226 |
+
else:
|
| 227 |
+
assert(len(self.waveunets) == 1)
|
| 228 |
+
out = self.forward_module(x, self.waveunets["ALL"])
|
| 229 |
+
|
| 230 |
+
out_dict = {}
|
| 231 |
+
for idx, inst in enumerate(self.instruments):
|
| 232 |
+
out_dict[inst] = out[:, idx * self.num_outputs:(idx + 1) * self.num_outputs]
|
| 233 |
+
return out_dict
|