import gradio as gr from io import BytesIO import fitz import tempfile import openai class TranslationAgent: def __init__(self, openai_key): self.memory = [] system_msg = "You are a translator from english to Chinese.\n" \ " The only thing you do is to translate.\n" \ " You don't write anything other then the translation of the text you get.\n" \ " The user will only provide the text without asking anything, but what he wants is the translation.\n" \ " Never return the translation of a previously translated part!\n " \ "The text you will need to translate will often include none sense stuff because it is coming from a text extraction of a pdf file including images and table.\n" \ " Do your best to translate also this messy parts." self.memory.append({"role": "system", "content": system_msg}) openai.api_key = openai_key def fade_memory(self): if len(self.memory) >= 5: del self.memory[1:3] def translate_chunk(self, chunk): self.memory.append({"role": "user", "content": chunk}) response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=self.memory ) reply = response["choices"][0]["message"]["content"] self.memory.append({"role": "assistant", "content": reply}) self.fade_memory() return reply def extract_text_from_pdf(pdf, start, stop): text = "" with fitz.open(stream=BytesIO(pdf), filetype='pdf') as doc: # remove .read() for i, page in enumerate(doc): if start <= i: if i <= stop: text += page.get_text() else: break return text def split_text(text, chunk_size=100): words = text.split() chunks = [] current_chunk_words = [] for word in words: current_chunk_words.append(word) if word.endswith('.') and len(current_chunk_words) >= chunk_size: chunks.append(' '.join(current_chunk_words)) current_chunk_words = [] # add the last chunk if any words remain if current_chunk_words: chunks.append(' '.join(current_chunk_words)) return chunks def translate_pdf(openai_key, pdf, start, stop): translator = TranslationAgent(openai_key) translated_text = "" error_message = "Translation Successful" try: # extract text if pdf is not None: text = extract_text_from_pdf(pdf, start=start, stop=stop) chunks = split_text(text) translated_chunks = [] for chunk in chunks: translated_chunk = translator.translate_chunk(chunk) translated_chunks.append(translated_chunk + " ") translated_text = ' '.join(translated_chunks) except Exception as e: error_message = f"Translation Failed: {e}" # Create a temporary file with a specific prefix temp = tempfile.NamedTemporaryFile(delete=False, prefix="translatedPDF_", suffix=".txt") # Write to the temporary file with open(temp.name, 'w', encoding='utf-8') as f: f.write(translated_text) return translated_text, error_message, temp.name iface = gr.Interface( fn=translate_pdf, inputs=[ gr.Textbox(lines=1, label="OpenAI API key", placeholder="Enter your OpenAI API key here"), gr.File(type="binary", label="PDF file", ), gr.Number(label="Starting Page", ), gr.Number(label="Final Page") ], outputs=["text", "text", gr.File(label="Translated Text File")], title="Pdf Translator: English ==> Chinese", ) iface.launch()