File size: 8,956 Bytes
0319a9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import torch
from transformers import AutoTokenizer, AutoModel
import os

class TextExtractor:
    def __init__(self, model_name, proxy=None):
        """
        Initialize the TextExtractor with a specified model and optional proxy settings.

        Parameters:
        - model_name (str): The name of the pre-trained model to load from HuggingFace Hub.
        - proxy (str, optional): The proxy address to use for HTTP and HTTPS requests.
        """
        if proxy is None:
            proxy = 'http://localhost:8234'

        if proxy:
            os.environ['HTTP_PROXY'] = proxy
            os.environ['HTTPS_PROXY'] = proxy
        try:
            self.tokenizer = AutoTokenizer.from_pretrained(model_name)
            self.model = AutoModel.from_pretrained(model_name)
        except:
            print('try switch on local_files_only')
            self.tokenizer = AutoTokenizer.from_pretrained(model_name, local_files_only=True)
            self.model = AutoModel.from_pretrained(model_name, local_files_only=True)

        self.model.eval()

    def extract(self, sentences):
        """
        Extract sentence embeddings for the provided sentences.

        Parameters:
        - sentences (list of str): A list of sentences to extract embeddings for.

        Returns:
        - torch.Tensor: The normalized sentence embeddings.
        """
        encoded_input = self.tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
        
        with torch.no_grad():
            model_output = self.model(**encoded_input)
            sentence_embeddings = model_output[0][:, 0]
        
        sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
        return sentence_embeddings
    
import pandas as pd
def get_qas(excel_file = None):

    defaule_excel_file = 'data/output_fixid.xlsx'
    if excel_file is None:
        excel_file = defaule_excel_file

    # 读取Excel文件
    df = pd.read_excel(excel_file)

    df = df[df["question"].notna()]
    df = df[df["summary"].notna()]

    datas = []

    # 遍历DataFrame的每一行
    for index, row in df.iterrows():
        id = row['id']
        question = row['question']
        short_answer = row['summary']
        category = row['category']

        texts = [question, short_answer]

        data_value = {
            "texts":texts,
        }
        
        data = {
            "id":id,
            "value":data_value
        }

        datas.append(data)

    return datas

from tqdm import tqdm

def extract_embedding(datas, text_extractor):
    """
    Extract embeddings for each item in the provided data.

    Parameters:
    - datas (list of dict): A list of dictionaries containing text data.

    Returns:
    - list of dict: The input data with added embeddings.
    """
    for data in tqdm(datas):
        texts = data["value"]["texts"]
        text = "。".join(texts)
        embeddings = text_extractor.extract(text)
        embeddings_list = embeddings.tolist()  # Convert tensor to list of lists
        data["value"]["embedding"] = embeddings_list
    return datas

def save_parquet(datas, file_path):
    """
    Save the provided data to a Parquet file.

    Parameters:
    - datas (list of dict): A list of dictionaries containing text data and embeddings.
    - file_path (str): The path to the output Parquet file.
    """
    # Flatten the data for easier conversion to DataFrame
    flattened_data = []
    for data in datas:
        id = data["id"]
        texts = data["value"]["texts"]
        text = "。".join(texts)
        embedding = data["value"]["embedding"]
        flattened_data.append({
            "id": id,
            "text": text,
            "embedding": embedding
        })
    
    # Create DataFrame
    df = pd.DataFrame(flattened_data)
    
    # Save DataFrame to Parquet
    df.to_parquet(file_path, index=False)

import pandas as pd
import os

def get_id2embedding(regen=False, parquet_file='datas/qa_with_embedding.parquet'):
    """
    Get a dictionary mapping IDs to embeddings. Regenerate embeddings if specified.

    Parameters:
    - parquet_file (str): The path to the Parquet file.
    - regen (bool): Whether to regenerate embeddings.

    Returns:
    - dict: A dictionary mapping IDs to list of float embeddings.
    """
    if regen or not os.path.exists(parquet_file):
        print("Regenerating embeddings...")
        # Example usage:
        model_name = 'BAAI/bge-small-zh-v1.5'
        text_extractor = TextExtractor(model_name)
        
        datas = get_qas()
        print("Extracting embeddings for", len(datas), "data items")
        
        datas = extract_embedding(datas, text_extractor)
        save_parquet(datas, parquet_file)
    
    df = pd.read_parquet(parquet_file)
    
    id2embedding = {}
    for index, row in df.iterrows():
        id = row['id']
        embedding = row['embedding']
        id2embedding[id] = embedding[0]
    
    return id2embedding

import torch
from sklearn.metrics.pairwise import cosine_similarity
import heapq

def __get_id2top30map(id2embedding):
    """
    Get a dictionary mapping IDs to their top 30 nearest neighbors based on cosine similarity.

    Parameters:
    - id2embedding (dict): A dictionary mapping IDs to list of float embeddings.

    Returns:
    - dict: A dictionary mapping each ID to a list of the top 30 nearest neighbor IDs.
    """
    ids = list(id2embedding.keys())
    embeddings = torch.tensor([id2embedding[id] for id in ids])

    # Compute cosine similarity matrix
    cos_sim_matrix = cosine_similarity(embeddings)

    id2top30map = {}
    for i, id in enumerate(ids):
        # Get the similarity scores for the current ID
        sim_scores = cos_sim_matrix[i]
        
        # Get the top 30 indices (excluding the current ID itself)
        top_indices = heapq.nlargest(31, range(len(sim_scores)), key=lambda x: sim_scores[x])
        top_indices.remove(i)  # Remove the index of the current ID
        
        # Map the indices back to IDs
        top_30_ids = [ids[idx] for idx in top_indices[:30]]
        
        id2top30map[id] = top_30_ids
    
    return id2top30map

import pickle

def get_id2top30map( id2embedding = None ):
    default_save_pkl = "data/id2top30map.pkl"
    if id2embedding is None:
        if os.path.exists(default_save_pkl):
            with open(default_save_pkl, 'rb') as f:
                id2top30map = pickle.load(f)
        else:
            print("No embedding found, generating new one...")
            id2embedding = get_id2embedding(regen=False)
            id2top30map = __get_id2top30map(id2embedding)
            with open(default_save_pkl, 'wb') as f:
                pickle.dump(id2top30map, f)
    else:
        id2top30map = __get_id2top30map(id2embedding)

    return id2top30map
        


if __name__ == '__main__':
    if False:
        # Example usage:
        model_name = 'BAAI/bge-small-zh-v1.5'
        sentences = ["样例数据-1", "样例数据-2"]

        text_extractor = TextExtractor(model_name)
        embeddings = text_extractor.extract(sentences)
        print("Sentence embeddings:", embeddings)

        datas = get_qas()

        print("extract embedding for ", len(datas), " datas")

        datas = extract_embedding(datas, text_extractor )

        default_parquet_save_name = "data/qa_with_embedding.parquet"

        save_parquet(datas, default_parquet_save_name)
    if True:
        id2embedding = get_id2embedding(regen=False)
        print(len(id2embedding[4]))
        id2top30map = get_id2top30map( None )
        print("ID to Top 30 Neighbors dictionary:", id2top30map[4])

    if True:

        start_id = 332
        visited_ids = [start_id]
        current_queue = [start_id]

        expend_num = 5

        for iteration in range(10):
            current_node = current_queue.pop(0)
            top30 = id2top30map[current_node]
            current_expend = []
            for id in top30:
                if id not in visited_ids:
                    visited_ids.append(id)
                    current_queue.append(id)
                    current_expend.append(id)
                    if len(current_expend) >= expend_num:
                        break
            display_text = f"{current_node} | ->" + ",".join([str(i) for i in current_expend])
            print(display_text)

        from get_qa_and_image import get_qa_and_image
        image_datas = get_qa_and_image()

        id2index = {}

        for i, data in enumerate(image_datas):
            id2index[data['id']] = i

        indexes = [id2index[i] for i in visited_ids if i in id2index]
        image_names = [image_datas[index]['value']['image'] for index in indexes]

        target_copy_folder = "data/asso_collection"
        
        import shutil
        # copy image into target_copy_folder
        for image_name in image_names:
            shutil.copy(image_name, target_copy_folder)