Spaces:
Sleeping
Sleeping
import traceback | |
import streamlit as st | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_core.output_parsers import StrOutputParser | |
from langchain_openai import ChatOpenAI | |
from langchain_anthropic import ChatAnthropic | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
PROMPT = """ | |
1. Task: Generate a unique motivational or reflective quote that relates directly to the user's reported feeling and plan for the day. | |
1-1.Ensure the quote is relevant and offers either support or inspiration based on the specific emotional context provided. | |
1-2.Avoid repeating any quotes, and do not use quotes by Steve Jobs. | |
1-3.Seek out lesser-known quotes and consider a diverse range of cultural and historical sources to enrich the variety and inclusiveness of the selections. | |
Provide a brief explanation of why the chosen quote fits the situation described by the user. | |
2.Feeling: {feeling}. | |
3.Reason for the feeling: {reason}. | |
4.Plan for the day: {plan}. | |
5. Explain within 100 words in English. | |
""" | |
def init_page(): | |
st.set_page_config( | |
page_title="Word of the Day AI Agent", | |
page_icon="🧘" | |
) | |
st.header("Word of the Day AI Agent🧘") | |
def select_model(temperature=0): | |
models = ("GPT-4o","GPT-4o-mini", "Claude 3.5 Sonnet", "Gemini 1.5 Pro") | |
model_choice = st.radio("Choose a model:", models) | |
if model_choice == "GPT-4o": | |
return ChatOpenAI(temperature=temperature, model_name="gpt-4o") | |
elif model_choice == "GPT-4o-mini": | |
return ChatOpenAI(temperature=temperature, model_name="gpt-4o-mini") | |
elif model_choice == "Claude 3.5 Sonnet": | |
return ChatAnthropic(temperature=temperature, model_name="claude-3-5-sonnet-20240620") | |
elif model_choice == "Gemini 1.5 Pro": | |
return ChatGoogleGenerativeAI(temperature=temperature, model="gemini-1.5-pro-latest") | |
def init_chain(): | |
llm = select_model() | |
prompt = ChatPromptTemplate.from_messages([ | |
("user", PROMPT), | |
]) | |
output_parser = StrOutputParser() | |
chain = prompt | llm | output_parser | |
return chain | |
def main(): | |
init_page() | |
# Style adjustments (optional, remove if not needed) | |
st.markdown("""<style>.st-emotion-cache-15ecox0 { display: none !important; } | |
@media (max-width: 50.5rem) {.st-emotion-cache-13ln4jf {max-width: calc(0rem + 100vw);}} | |
</style>""",unsafe_allow_html=True,) | |
chain = init_chain() | |
if chain: | |
feeling = st.selectbox( | |
"How are you feeling today?", | |
("I want to be more motivated", "I'm feeling sad", "I'm angry", "I just want to relax today", "I feel excited", "I'm feeling anxious"), | |
key="feeling" | |
) | |
reason = st.text_input("What's the reason for this feeling?", key="reason") | |
plan = st.text_input("What's your plan for today?", key="plan") | |
if st.button("Submit"): | |
result = chain.stream({"feeling": feeling, "reason": reason, "plan": plan}) | |
st.write(result) | |
if __name__ == '__main__': | |
main() | |