henry2024 commited on
Commit
bd5b53c
·
1 Parent(s): f64afcb
Files changed (2) hide show
  1. __pycache__/nltk_u.cpython-39.pyc +0 -0
  2. app.py +11 -12
__pycache__/nltk_u.cpython-39.pyc ADDED
Binary file (915 Bytes). View file
 
app.py CHANGED
@@ -3,12 +3,12 @@ import gradio as gr
3
  import os
4
  import torch
5
  import random
6
- #import nltk_utils
7
  import pandas as pd
8
  from sklearn.model_selection import train_test_split
9
  import time
10
 
11
- #from model import RNN_model
12
  from timeit import default_timer as timer
13
  from typing import Tuple, Dict
14
 
@@ -47,17 +47,17 @@ class_names= {0: 'Acne',
47
  23: 'urinary tract infection'
48
  }
49
 
50
- #vectorizer= nltk_utils.vectorizer()
51
- #vectorizer.fit(train_data.text)
52
 
53
 
54
 
55
  # Model and transforms preparation
56
- #model= RNN_model()
57
  # Load state dict
58
- #model.load_state_dict(torch.load(
59
- # f= 'pretrained_symtom_to_disease_model.pth',
60
- # map_location= torch.device('cpu'))
61
  # Disease Advice
62
  disease_advice = {
63
  'Acne': "Maintain a proper skincare routine, avoid excessive touching of the affected areas, and consider using over-the-counter topical treatments. If severe, consult a dermatologist.",
@@ -175,9 +175,8 @@ with gr.Blocks(css = """#col_container { margin-left: auto; margin-right: auto;}
175
  elif message.lower() in goodbyes:
176
  bot_message= random.choice(goodbye_replies)
177
  else:
178
- bot_message= random.choice(goodbye_replies)
179
- '''
180
- else:
181
  transform_text= vectorizer.transform([message])
182
  transform_text= torch.tensor(transform_text.toarray()).to(torch.float32)
183
  model.eval()
@@ -190,7 +189,7 @@ with gr.Blocks(css = """#col_container { margin-left: auto; margin-right: auto;}
190
  chat_history.append((message, bot_message))
191
  time.sleep(2)
192
  return "", chat_history
193
- '''
194
  msg.submit(respond, [msg, chatbot], [msg, chatbot])
195
 
196
 
 
3
  import os
4
  import torch
5
  import random
6
+ import nltk_u
7
  import pandas as pd
8
  from sklearn.model_selection import train_test_split
9
  import time
10
 
11
+ from model import RNN_model
12
  from timeit import default_timer as timer
13
  from typing import Tuple, Dict
14
 
 
47
  23: 'urinary tract infection'
48
  }
49
 
50
+ vectorizer= nltk_u.vectorizer()
51
+ vectorizer.fit(train_data.text)
52
 
53
 
54
 
55
  # Model and transforms preparation
56
+ model= RNN_model()
57
  # Load state dict
58
+ model.load_state_dict(torch.load(
59
+ f= 'pretrained_symtom_to_disease_model.pth',
60
+ map_location= torch.device('cpu')))
61
  # Disease Advice
62
  disease_advice = {
63
  'Acne': "Maintain a proper skincare routine, avoid excessive touching of the affected areas, and consider using over-the-counter topical treatments. If severe, consult a dermatologist.",
 
175
  elif message.lower() in goodbyes:
176
  bot_message= random.choice(goodbye_replies)
177
  else:
178
+ #bot_message= random.choice(goodbye_replies)
179
+
 
180
  transform_text= vectorizer.transform([message])
181
  transform_text= torch.tensor(transform_text.toarray()).to(torch.float32)
182
  model.eval()
 
189
  chat_history.append((message, bot_message))
190
  time.sleep(2)
191
  return "", chat_history
192
+
193
  msg.submit(respond, [msg, chatbot], [msg, chatbot])
194
 
195