Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
import gradio as gr
|
3 |
+
# importing necessary libraries
|
4 |
+
from transformers import AutoTokenizer, TFAutoModelForQuestionAnswering
|
5 |
+
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-large-uncased-whole-word-masking-finetuned-squad")
|
7 |
+
model = TFAutoModelForQuestionAnswering.from_pretrained("bert-large-uncased-whole-word-masking-finetuned-squad",return_dict=False)
|
8 |
+
from transformers import pipeline
|
9 |
+
|
10 |
+
nlp = pipeline("question-answering", model=model, tokenizer=tokenizer)
|
11 |
+
|
12 |
+
context = "My name is Hema Raikhola, i am a data scientist and machine learning engineer."
|
13 |
+
question = "what is my profession?"
|
14 |
+
|
15 |
+
result = nlp(question = question, context=context)
|
16 |
+
|
17 |
+
print(f"QUESTION: {question}")
|
18 |
+
print(f"ANSWER: {result['answer']}")
|
19 |
+
|
20 |
+
# creating the function
|
21 |
+
def func(context, question):
|
22 |
+
result = nlp(question = question, context=context)
|
23 |
+
return result['answer']
|
24 |
+
|
25 |
+
example_1 = "(1) Kanisha,Preeti,Hema and Shaksham are the team members.They are working on a machine learning project"
|
26 |
+
qst_1 = "who are the team members?"
|
27 |
+
|
28 |
+
example_2 = "(2) Natural Language Processing (NLP) allows machines to break down and interpret human language. It's at the core of tools we use every day – from translation software, chatbots, spam filters, and search engines, to grammar correction software, voice assistants, and social media monitoring tools."
|
29 |
+
qst_2 = "What is NLP used for?"
|
30 |
+
|
31 |
+
|
32 |
+
from transformers import ViltProcessor, ViltForQuestionAnswering
|
33 |
+
|
34 |
+
|
35 |
+
def getResult(query, image):
|
36 |
+
# prepare image + question
|
37 |
+
#image = Image.open(BytesIO(base64.b64decode(base64_encoded_image)))
|
38 |
+
text = query
|
39 |
+
|
40 |
+
processor = ViltProcessor.from_pretrained(
|
41 |
+
"dandelin/vilt-b32-finetuned-vqa")
|
42 |
+
model = ViltForQuestionAnswering.from_pretrained(
|
43 |
+
"dandelin/vilt-b32-finetuned-vqa")
|
44 |
+
|
45 |
+
# prepare inputs
|
46 |
+
encoding = processor(image, text, return_tensors="pt")
|
47 |
+
|
48 |
+
# forward pass
|
49 |
+
outputs = model(**encoding)
|
50 |
+
logits = outputs.logits
|
51 |
+
idx = logits.argmax(-1).item()
|
52 |
+
print("Predicted answer:", model.config.id2label[idx])
|
53 |
+
return model.config.id2label[idx]
|
54 |
+
|
55 |
+
# creating the interface
|
56 |
+
iface = gr.Interface(fn=getResult, inputs=[
|
57 |
+
"text", gr.Image(type="pil")], outputs="text")
|
58 |
+
|
59 |
+
# creating the interface
|
60 |
+
app = gr.Interface(fn=func,
|
61 |
+
inputs = ['textbox', 'text'],
|
62 |
+
outputs = gr.Textbox( lines=10),
|
63 |
+
title = 'Question Answering bot',
|
64 |
+
description = 'Input context and question, then get answers!',
|
65 |
+
examples = [[example_1, qst_1],
|
66 |
+
[example_2, qst_2]],
|
67 |
+
theme = "darkhuggingface",
|
68 |
+
Timeout =120,
|
69 |
+
allow_flagging="manual",
|
70 |
+
flagging_options=["incorrect", "ambiguous", "offensive", "other"],
|
71 |
+
|
72 |
+
).queue()
|
73 |
+
# launching the app
|
74 |
+
gr.TabbedInterface([iface,app],["Visual QA","Text QA"]).launch(auth = ('user','teamwork'), auth_message = "Check your Login details sent to your email")
|