helliun's picture
Update app.py
039bde1 verified
import gradio as gr
import pandas as pd
import re
import csv
import pandas as pd
def update_scores(winner, loser, k_factor=100):
score_difference = int(k_factor/(winner/loser))
winner += score_difference
loser -= score_difference
return winner, loser
def vote_startup(opponents_df):
try:
opponents_df = opponents_df[["elo_score", "descriptor", "opponent"]]
except:
opponents_df = pd.DataFrame(columns=['elo_score', 'descriptor', 'opponent'])
if len(opponents_df)>0:
if len(opponents_df)>10:
slice_size = 4
slice = int(len(opponents_df)/slice_size)
sample = opponents_df[slice:(slice_size-1)*slice].sample(frac=1).iloc[0]
opponent, descriptor = sample["opponent"], sample["descriptor"]
else:
sample = opponents_df.sample(frac=1).iloc[0]
opponent, descriptor = sample["opponent"], sample["descriptor"]
if len(opponents_df) > 1:
# Randomly select a opponent to compare with
sample = opponents_df.sample(frac=1)
comparison_opponent = sample.iloc[0]
if comparison_opponent['opponent'] == opponent and comparison_opponent['descriptor'] == descriptor:
comparison_opponent = sample.iloc[1]
first_df = opponents_df[opponents_df["opponent"]==opponent][opponents_df["descriptor"]==descriptor]
first_string = first_df["opponent"].tolist()[0]+" - "+first_df["descriptor"].tolist()[0]
second_df = comparison_opponent
second_string = second_df["opponent"]+" - "+second_df["descriptor"]
return f"Do you like '{descriptor} - {opponent}' better than '{comparison_opponent['descriptor']} - {comparison_opponent['opponent']}'?", first_string, second_string, display_rankings(opponents_df)
else:
return "Add some opponents to start voting!", "", "", display_rankings(opponents_df)
def clean_string(string):
string = string.strip().replace(" "," ").lower()
string = " ".join([x[0].upper()+x[1:] for x in string.split()])
return string
def add_and_compare(descriptor, opponent, opponents_df):
try:
opponents_df = opponents_df[["elo_score", "descriptor", "opponent"]]
except:
opponents_df = pd.DataFrame(columns=['elo_score', 'descriptor', 'opponent'])
if descriptor != "" and opponent != "":
descriptor = clean_string(descriptor)
opponent = clean_string(opponent)
new_opponent = pd.DataFrame({'descriptor': [descriptor], 'opponent': [opponent], 'elo_score': [1000]})
opponents_df = pd.concat([opponents_df, new_opponent], ignore_index=True)
opponents_df.to_csv("opponents_df.csv")
opponents_df = opponents_df[["elo_score", "descriptor", "opponent"]]
return "", "", display_rankings(opponents_df)
# Function to update Elo ratings based on user's choice
def update_ratings_pos(first_string, second_string, opponents_df):
try:
opponents_df = opponents_df[["elo_score", "descriptor", "opponent"]]
except:
opponents_df = pd.DataFrame(columns=['elo_score', 'descriptor', 'opponent'])
if len(opponents_df)==0:
return "Add some opponents to start voting!", "", "", display_rankings(opponents_df)
if first_string != "":
opponents_df["combined"] = opponents_df["opponent"] + " - " + opponents_df["descriptor"]
loser = opponents_df[opponents_df["combined"] == second_string]
winner = opponents_df[opponents_df["combined"] == first_string]
# Update Elo scores
winner_score, loser_score = update_scores(winner['elo_score'].values[0], loser['elo_score'].values[0])
opponents_df.at[winner.index[0], 'elo_score'] = winner_score
opponents_df.at[loser.index[0], 'elo_score'] = loser_score
opponents_df = opponents_df.sort_values(by='elo_score', ascending=False)
opponents_df.to_csv("opponents_df.csv")
if len(opponents_df)>10:
slice_size = 4
slice = int(len(opponents_df)/slice_size)
sample = opponents_df[slice:(slice_size-1)*slice].sample(frac=1).iloc[0]
opponent, descriptor = sample["opponent"], sample["descriptor"]
else:
sample = opponents_df.sample(frac=1).iloc[0]
opponent, descriptor = sample["opponent"], sample["descriptor"]
if len(opponents_df) > 1:
# Randomly select a opponent to compare with
sample = opponents_df.sample(frac=1)
comparison_opponent = sample.iloc[0]
if comparison_opponent['opponent'] == opponent and comparison_opponent['descriptor'] == descriptor:
comparison_opponent = sample.iloc[1]
first_df = opponents_df[opponents_df["opponent"]==opponent][opponents_df["descriptor"]==descriptor]
first_string = first_df["opponent"].tolist()[0]+" - "+first_df["descriptor"].tolist()[0]
second_df = comparison_opponent
second_string = second_df["opponent"]+" - "+second_df["descriptor"]
return f"Do you like '{descriptor} - {opponent}' better than '{comparison_opponent['descriptor']} - {comparison_opponent['opponent']}'?", first_string, second_string, display_rankings(opponents_df)
else:
return "Add some opponents to start voting!", "", "", display_rankings(opponents_df)
# Function to update Elo ratings based on user's choice
def update_ratings_neg(first_string, second_string, opponents_df):
try:
opponents_df = opponents_df[["elo_score", "descriptor", "opponent"]]
except:
opponents_df = pd.DataFrame(columns=['elo_score', 'descriptor', 'opponent'])
if len(opponents_df)==0:
return "Add some opponents to start voting!", "", "", display_rankings(opponents_df)
if first_string != "":
opponents_df["combined"] = opponents_df["opponent"] + " - " + opponents_df["descriptor"]
loser = opponents_df[opponents_df["combined"] == first_string]
winner = opponents_df[opponents_df["combined"] == second_string]
# Update Elo scores
winner_score, loser_score = update_scores(winner['elo_score'].values[0], loser['elo_score'].values[0])
opponents_df.at[winner.index[0], 'elo_score'] = winner_score
opponents_df.at[loser.index[0], 'elo_score'] = loser_score
opponents_df = opponents_df.sort_values(by='elo_score', ascending=False)
opponents_df.to_csv("opponents_df.csv")
if len(opponents_df)>10:
slice_size = 4
slice = int(len(opponents_df)/slice_size)
sample = opponents_df[slice:(slice_size-1)*slice].sample(frac=1).iloc[0]
opponent, descriptor = sample["opponent"], sample["descriptor"]
else:
sample = opponents_df.sample(frac=1).iloc[0]
opponent, descriptor = sample["opponent"], sample["descriptor"]
if len(opponents_df) > 1:
# Randomly select a opponent to compare with
sample = opponents_df.sample(frac=1)
comparison_opponent = sample.iloc[0]
if comparison_opponent['opponent'] == opponent and comparison_opponent['descriptor'] == descriptor:
comparison_opponent = sample.iloc[1]
first_df = opponents_df[opponents_df["opponent"]==opponent][opponents_df["descriptor"]==descriptor]
first_string = first_df["opponent"].tolist()[0]+" - "+first_df["descriptor"].tolist()[0]
second_df = comparison_opponent
second_string = second_df["opponent"]+" - "+second_df["descriptor"]
return f"Do you like '{descriptor} - {opponent}' better than '{comparison_opponent['descriptor']} - {comparison_opponent['opponent']}'?", first_string, second_string, display_rankings(opponents_df)
else:
return "Add some opponents to start voting!", "", "", display_rankings(opponents_df)
def display_rankings(opponents_df=pd.DataFrame(columns=['elo_score', 'descriptor', 'opponent'])):
opponents_df = opponents_df.sort_values(by='elo_score', ascending=False)
opponents_df = opponents_df[["elo_score", "descriptor", "opponent"]]
opponents_df.to_csv("opponents_df.csv")
return opponents_df
def export_csv(opponents_df):
# Function to export DataFrame to CSV
save_df = opponents_df
save_df.to_csv("opponents_df.csv")
return "opponents_df.csv"
def import_csv(file, opponents_df):
if file is not None:
#file_content = file.decode('utf-8')
new_df = pd.read_csv(file)
try:
opponents_df = opponents_df[["elo_score", "descriptor", "opponent"]]
except:
opponents_df = pd.DataFrame(columns=['elo_score', 'descriptor', 'opponent'])
new_df = new_df[["elo_score", "descriptor", "opponent"]]
opponents_df = pd.concat([opponents_df,new_df])
opponents_df = opponents_df.drop_duplicates(subset=['descriptor', 'opponent'])
return opponents_df
# Function to remove a opponent
def remove_opponent(descriptor, opponent, opponents_df):
# Find and remove the opponent from the DataFrame
descriptor = clean_string(descriptor)
opponent = clean_string(opponent)
opponents_df = opponents_df[~((opponents_df["descriptor"] == descriptor) & (opponents_df["opponent"] == opponent))]
return opponents_df[["elo_score", "descriptor", "opponent"]]
def reset_rankings(opponents_df):
opponents_df["elo_score"] = [1000]*len(opponents_df)
opponents_df = opponents_df[["elo_score", "descriptor", "opponent"]]
return display_rankings(opponents_df)
def clear_rankings(opponents_df):
opponents_df = pd.DataFrame(columns=['elo_score', 'descriptor', 'opponent'])
return display_rankings(opponents_df)
# theme='Taithrah/Minimal'
# Gradio interface
theme = gr.themes.Soft(primary_hue="red", secondary_hue="blue")
with gr.Blocks(theme=theme) as app:
gr.Markdown(
"""## Preference-based Elo Ranker
This tool helps you create **accurate rankings** of things based on your personal preferences.
It does this by asking you questions comparing a random pair of your inpys, and then using your
answers to calculate Elo scores for ranking.
"""
)
with gr.Row():
previews_df = pd.DataFrame(columns=['elo_score', 'descriptor', 'opponent'])
previews = gr.DataFrame(value=previews_df, interactive=False, visible=False)
with gr.Column():
gr.Markdown(
"""### Vote to Rank
"""
)
with gr.Row():
compare_output = gr.Textbox("Add some options to start voting!", label="Comparison", interactive=False, scale=3)
with gr.Row():
yes_button = gr.Button("Yes", variant="secondary")
no_button = gr.Button("No", variant="primary")
new_vote = gr.Button("New Vote")
with gr.Row():
with gr.Column():
compare_index_1 = gr.Textbox(label="",interactive=False, visible=False)
with gr.Column():
compare_index_2 = gr.Textbox(label="",interactive=False, visible=False)
with gr.Column():
gr.Markdown(
"""### Rankings
"""
)
opponents_df = pd.DataFrame(columns=['elo_score', 'descriptor', 'opponent'])
rankings = gr.DataFrame(value=opponents_df, interactive=False, headers=["Score","descriptor", "opponent"])
gr.Markdown(
"""### Add Opponents
"""
)
with gr.Row():
descriptor_input = gr.Textbox(label="Type")
opponent_input = gr.Textbox(label="Opponent")
add_button = gr.Button("Add Opponent")
add_button.click(add_and_compare, inputs=[descriptor_input, opponent_input, rankings], outputs=[descriptor_input, opponent_input, rankings])
gr.Markdown(
"""### Remove Opponents
"""
)
with gr.Row():
remove_descriptor_input = gr.Textbox(label="Type")
remove_opponent_input = gr.Textbox(label="Opponent")
remove_button = gr.Button("Remove opponent")
remove_button.click(remove_opponent, inputs=[remove_descriptor_input, remove_opponent_input, rankings], outputs=rankings)
gr.Markdown(
"""### Import and Export Rankings
"""
)
with gr.Row():
# Import CSV file to replace the existing DataFrame
import_button = gr.File(label="Import CSV", file_count="single")
import_button.change(fn=import_csv, inputs=[import_button, rankings], outputs=[rankings])
with gr.Column():
# Export button to download the DataFrame as CSV
export_link = gr.File(label="Download CSV", file_count="single")
export_button = gr.Button("Export as CSV")
export_button.click(fn=export_csv, inputs=[rankings], outputs=export_link)
gr.Markdown("### Reset Data")
with gr.Row():
reset_button = gr.Button("Reset Scores")
reset_button.click(reset_rankings, inputs=[rankings], outputs=rankings)
clear_button = gr.Button("Clear Table", variant="primary")
clear_button.click(clear_rankings, inputs=[rankings], outputs=rankings)
# add_button.click(add_and_compare, inputs=[descriptor_input, opponent_input, rankings], outputs=[descriptor_input, opponent_input, rankings])
yes_button.click(update_ratings_pos, inputs=[compare_index_1, compare_index_2, rankings], outputs=[compare_output, compare_index_1, compare_index_2, rankings])
no_button.click(update_ratings_neg, inputs=[compare_index_1, compare_index_2, rankings], outputs=[compare_output, compare_index_1, compare_index_2, rankings])
new_vote.click(vote_startup, inputs=[rankings],outputs=[compare_output, compare_index_1, compare_index_2, rankings])
app.launch(share=False)