import whisper import gradio as gr import openai from TTS.api import TTS import subprocess import os OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY") model_name = TTS.list_models()[9] tts = TTS(model_name) model = whisper.load_model('medium') def run_ffmpeg_command(): command = ['ffmpeg', '-f', 'lavfi', '-i', 'anullsrc=r=44100:cl=mono', '-t', '1', '-q:a', '9', '-acodec', 'libmp3lame', 'output.wav'] result = subprocess.run(command, capture_output=True, text=True) print(result.stdout) def voice_chat(user_voice): openai.api_key = OPENAI_API_KEY messages = [ {"role": "system", "content": "You are a kind helpful assistant."}, ] user_message = model.transcribe(user_voice)["text"] messages.append( {"role": "user", "content": user_message}, ) chat = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages ) reply = chat.choices[0].message.content messages.append({"role": "assistant", "content": reply}) tts.tts_to_file(text=reply, file_path="output.wav") return(reply, "output.wav") # run_ffmpeg_command() gr.Interface( title = 'Smart Voice Assistant', description = 'Use this gradio app interface to get answers for all your queries in both text and speech format. \ Just communicate your queries in speech format and this app will take care of the rest.', fn=voice_chat, inputs=[ gr.Audio(sources="microphone", label="Input Voice", type="filepath") ], outputs=[ gr.Textbox(label="Summarized Answer"), gr.Audio(label="Output Speech", type="filepath") ]).launch()