import gradio as gr import matplotlib.pyplot as plt from matplotlib_venn import venn3 from io import BytesIO from PIL import Image import pandas as pd def validate_inputs(A, B, C, AB, AC, BC, ABC, U): errors = [] if A < AB + AC - ABC: errors.append("A no puede ser menor que la suma de AB y AC menos ABC.") if B < AB + BC - ABC: errors.append("B no puede ser menor que la suma de AB y BC menos ABC.") if C < AC + BC - ABC: errors.append("C no puede ser menor que la suma de AC y BC menos ABC.") if U < A + B + C - AB - AC - BC + ABC: errors.append("El conjunto universal U es menor que la suma total de los conjuntos y sus intersecciones.") return errors def suggest_intersections(A, B, C, U): max_AB = min(A, B, U - (A + B + C - A - B)) max_AC = min(A, C, U - (A + B + C - A - C)) max_BC = min(B, C, U - (A + B + C - B - C)) max_ABC = min(max_AB, max_AC, max_BC) min_AB = max(0, A + B + C - A - B - C + ABC - U) min_AC = max(0, A + C + B - A - C - B + ABC - U) min_BC = max(0, B + C + A - B - C - A + ABC - U) min_ABC = max(0, ABC - (A + B + C - AB - AC - BC + ABC)) suggestions = { "Mínimo valor sugerido para A ∩ B": min_AB, "Máximo valor sugerido para A ∩ B": max_AB, "Mínimo valor sugerido para A ∩ C": min_AC, "Máximo valor sugerido para A ∩ C": max_AC, "Mínimo valor sugerido para B ∩ C": min_BC, "Máximo valor sugerido para B ∩ C": max_BC, "Mínimo valor sugerido para A ∩ B ∩ C": min_ABC, "Máximo valor sugerido para A ∩ B ∩ C": max_ABC, } return suggestions def calculate_probabilities(A, B, C, AB, AC, BC, ABC, U): total = U if U > 0 else (A + B + C - AB - AC - BC + ABC) if total == 0: return { "P(A)": 0, "P(B)": 0, "P(C)": 0, "P(A ∩ B)": 0, "P(A ∩ C)": 0, "P(B ∩ C)": 0, "P(A ∩ B ∩ C)": 0, } P_A = A / total P_B = B / total P_C = C / total P_AB = AB / total P_AC = AC / total P_BC = BC / total P_ABC = ABC / total PA_given_B = P_AB / P_B if P_B > 0 else 0 PA_given_C = P_AC / P_C if P_C > 0 else 0 PB_given_C = P_BC / P_C if P_C > 0 else 0 formatted_probs = { "P(A)": f"{P_A:.2%} ({A}/{total})", "P(B)": f"{P_B:.2%} ({B}/{total})", "P(C)": f"{P_C:.2%} ({C}/{total})", "P(A ∩ B)": f"{P_AB:.2%} ({AB}/{total})", "P(A ∩ C)": f"{P_AC:.2%} ({AC}/{total})", "P(B ∩ C)": f"{P_BC:.2%} ({BC}/{total})", "P(A ∩ B ∩ C)": f"{P_ABC:.2%} ({ABC}/{total})", "P(A | B)": f"{PA_given_B:.2%}", "P(A | C)": f"{PA_given_C:.2%}", "P(B | C)": f"{PB_given_C:.2%}", "U (Universal Set)": total, "Complemento de A U B U C": U - (A + B + C - AB - AC - BC + ABC) } # Convert to DataFrame for better visualization df = pd.DataFrame(list(formatted_probs.items()), columns=["Descripción", "Valor"]) return df # This function should be integrated with the main part of the app or interface # It could be connected to a gradio UI, for example, to allow interactive use