import os from dotenv import load_dotenv from langchain.document_loaders import GithubFileLoader # from langchain.embeddings import HuggingFaceEmbeddings from langchain_huggingface import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS from langchain_text_splitters import CharacterTextSplitter load_dotenv() #get the GITHUB_ACCESS_TOKEN from the .env file GITHUB_ACCESS_TOKEN = os.getenv("GITHUB_ACCESS_TOKEN") USER = "heaversm" REPO = "gdrive-docker" GITHUB_BASE_URL = "https://github.com/" def get_similar_files(query, db, embeddings): # embedding_vector = embeddings.embed_query(query) # docs_and_scores = db.similarity_search_by_vector(embedding_vector, k = 10) docs_and_scores = db.similarity_search_with_score(query) return docs_and_scores def get_hugging_face_model(): model_name = "mchochlov/codebert-base-cd-ft" hf = HuggingFaceEmbeddings(model_name=model_name) return hf loader = GithubFileLoader( #repo is USER/REPO repo=f"{USER}/{REPO}", access_token=GITHUB_ACCESS_TOKEN, github_api_url="https://api.github.com", file_filter=lambda file_path: file_path.endswith( (".py", ".ts") ), # load all python and typescript files ) documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embedding_vector = get_hugging_face_model() db = FAISS.from_documents(docs, embedding_vector) model_name = "mchochlov/codebert-base-cd-ft" query = """ def create_app(): app = connexion.FlaskApp(__name__, specification_dir="../.openapi") app.add_api( API_VERSION, resolver=connexion.resolver.RelativeResolver("provider.app") ) """ results_with_scores = get_similar_files(query, db, embedding_vector) print ("retrieved!!!") print(f"Number of results: {len(results_with_scores)}") # score is a distance score, the lower the better for doc, score in results_with_scores: print(f"Metadata: {doc.metadata}, Score: {score}") top_file_path = results_with_scores[0][0].metadata['path'] top_file_content = results_with_scores[0][0].page_content top_file_score = results_with_scores[0][1] top_file_link = f"{GITHUB_BASE_URL}{USER}/{REPO}/blob/main/{top_file_path}" print(f"Top file link: {top_file_link}")