Spaces:
Sleeping
Sleeping
Henry Du
commited on
Commit
·
d85c7f7
1
Parent(s):
d2a009f
Update files
Browse files- app.py +94 -0
- class_names.txt +42 -0
- models/mobileNetV3_quickdraw_animals_epoch_80_Adam.pth +3 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### 1. Imports and class names setup ###
|
2 |
+
import gradio as gr
|
3 |
+
import os
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from typing import Dict
|
7 |
+
import torchvision
|
8 |
+
from torchvision import transforms
|
9 |
+
import PIL
|
10 |
+
import numpy
|
11 |
+
|
12 |
+
# import os
|
13 |
+
# os.system("pip uninstall -y gradio")
|
14 |
+
# os.system("pip install gradio==3.50.2")
|
15 |
+
|
16 |
+
with open("class_names.txt", "r") as f: # reading them in from class_names.txt
|
17 |
+
class_names = [food_name.strip() for food_name in f.readlines()]
|
18 |
+
|
19 |
+
|
20 |
+
mobileNetV3_transform = torchvision.models.MobileNet_V3_Large_Weights.DEFAULT.transforms()
|
21 |
+
|
22 |
+
mobileNetV3 = torchvision.models.mobilenet_v3_large()
|
23 |
+
|
24 |
+
mobileNetV3.classifier = nn.Sequential(
|
25 |
+
nn.Linear(in_features=960, out_features=1280, bias=True),
|
26 |
+
nn.Hardswish(),
|
27 |
+
nn.Dropout(p=0.2, inplace=True),
|
28 |
+
nn.Linear(in_features=1280, out_features=len(class_names), bias=True)
|
29 |
+
)
|
30 |
+
|
31 |
+
mobileNetV3.load_state_dict(torch.load("models/mobileNetV3_quickdraw_animals_epoch_80_Adam.pth",map_location=torch.device('cpu')))
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
def convert_img_to_tensor(img):
|
36 |
+
convert_img = torch.from_numpy(img)
|
37 |
+
convert_img = convert_img.repeat(3, 1, 1)
|
38 |
+
return convert_img
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
def predict(img) -> Dict:
|
43 |
+
"""Transforms and performs a prediction on img and returns prediction and time taken.
|
44 |
+
"""
|
45 |
+
# Start the timer
|
46 |
+
# print(type(img))
|
47 |
+
# img = img['composite']
|
48 |
+
# if type(img) == numpy.ndarray:
|
49 |
+
# img = PIL.Image.fromarray(img)
|
50 |
+
img = convert_img_to_tensor(img)
|
51 |
+
# padding = transforms.CenterCrop([224, 224])
|
52 |
+
# img = padding(img)
|
53 |
+
# img = torch.from_numpy(img)
|
54 |
+
# print(img.shape)
|
55 |
+
# Transform the target image and add a batch dimension
|
56 |
+
# # img = torch.tensor(img, dtype=torch.float32).unsqueeze(0).unsqueeze(0) / 255
|
57 |
+
img = mobileNetV3_transform(img).unsqueeze(0)
|
58 |
+
# img = image_transform(img).unsqueeze(0)
|
59 |
+
|
60 |
+
|
61 |
+
# Put model into evaluation mode and turn on inference mode
|
62 |
+
mobileNetV3.eval()
|
63 |
+
with torch.inference_mode():
|
64 |
+
# Pass the transformed image through the model and turn the prediction logits into prediction probabilities
|
65 |
+
y_pred = mobileNetV3(img)
|
66 |
+
pred_probs = torch.softmax(y_pred, dim=1)
|
67 |
+
# y_pred_class = torch.argmax(torch.softmax(y_pred, dim=1), dim=1)
|
68 |
+
|
69 |
+
# Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
|
70 |
+
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
|
71 |
+
|
72 |
+
# Calculate the prediction time
|
73 |
+
|
74 |
+
# Return the prediction dictionary and prediction time
|
75 |
+
return pred_labels_and_probs
|
76 |
+
|
77 |
+
title = "MobileNetV3 - Quick Draw - Animals 🔢"
|
78 |
+
description = "An MobileNetV3 feature extractor computer vision model to classify doodling of animals."
|
79 |
+
article = "Created using transfer learning from MobileNetV3"
|
80 |
+
|
81 |
+
|
82 |
+
sp = gr.Sketchpad(shape = (28,28), brush_radius = 1)
|
83 |
+
# sp = gr.Sketchpad(type = "pil")
|
84 |
+
demo = gr.Interface(
|
85 |
+
fn=predict,
|
86 |
+
inputs=sp,
|
87 |
+
outputs= gr.Label(num_top_classes=5, label="Predictions"),
|
88 |
+
# outputs= gr.Image(),
|
89 |
+
# examples=example_list,
|
90 |
+
# title=title,
|
91 |
+
# description=description,
|
92 |
+
# article=article,
|
93 |
+
)
|
94 |
+
demo.launch(debug=True)
|
class_names.txt
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Ant
|
2 |
+
Bat
|
3 |
+
Bear
|
4 |
+
Bee
|
5 |
+
Bird
|
6 |
+
Crab
|
7 |
+
Crocodile
|
8 |
+
Dog
|
9 |
+
Dolphin
|
10 |
+
Donut
|
11 |
+
Dragon
|
12 |
+
Elephant
|
13 |
+
Flamingo
|
14 |
+
Frog
|
15 |
+
Giraffe
|
16 |
+
Hedgehog
|
17 |
+
Horse
|
18 |
+
Kangaroo
|
19 |
+
Lion
|
20 |
+
Lobster
|
21 |
+
Monkey
|
22 |
+
Octopus
|
23 |
+
Owl
|
24 |
+
Panda
|
25 |
+
Parrot
|
26 |
+
Penguin
|
27 |
+
Pig
|
28 |
+
Rabbit
|
29 |
+
Raccoon
|
30 |
+
Rhinoceros
|
31 |
+
Scorpion
|
32 |
+
Sea Turtle
|
33 |
+
Shark
|
34 |
+
Sheep
|
35 |
+
Snail
|
36 |
+
Snake
|
37 |
+
Spider
|
38 |
+
Squirrel
|
39 |
+
Swan
|
40 |
+
Tiger
|
41 |
+
Whale
|
42 |
+
Zebra
|
models/mobileNetV3_quickdraw_animals_epoch_80_Adam.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:57405814360d60d10c8bb7562be945e338844ffbca061796ace78d4bf2a74493
|
3 |
+
size 17245682
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
gradio==3.50.2
|