from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import Chroma from langchain.document_loaders import TextLoader, DirectoryLoader import os import re from sentence_transformers.cross_encoder import CrossEncoder import numpy as np from langchain.schema.retriever import BaseRetriever, Document from typing import List from langchain.callbacks.manager import CallbackManagerForRetrieverRun from langchain.vectorstores import VectorStore from llm import URALLM from langchain.prompts import PromptTemplate # Get role for passage document def get_role(document): """ Get role for student. """ # Tìm kiếm các từ khóa liên quan đến vai trò học viên trong document. keywords = [ "sinh viên", "đại học", "học viên", "thạc sĩ", "nghiên cứu sinh", "tiến sĩ", ] role = [] for keyword in keywords: if keyword in document.metadata['source'].lower(): role.append(keyword) return ", ".join(role) def processing_data(data_path): folders = os.listdir(data_path) dir_loaders = [] # Add the documents to the project for folder in folders: dir_loader = DirectoryLoader((os.path.join(data_path, folder)), loader_cls=TextLoader) dir_loaders.append(dir_loader) # Load the text files. loaded_documents = [] for dir_loader in dir_loaders: loaded_documents.append(dir_loader.load()) data = [] for i in range(len(loaded_documents)): for j in range(len(loaded_documents[i])): data.append(loaded_documents[i][j]) # Final data prepare for vector database for document in data: role = get_role(document) document.metadata['role'] = role return data # Embedding model embedding = HuggingFaceEmbeddings( model_name="VoVanPhuc/sup-SimCSE-VietNamese-phobert-base", model_kwargs={"device": "cpu"} ) # embedding = HuggingFaceEmbeddings( # model_name="sentence-transformers/all-MiniLM-L6-v2", # model_kwargs={"device": "cpu"} # ) # Vector database data_path = 'raw_data' persist_directory = 'vector_db' vectordb = Chroma.from_documents( documents=processing_data(data_path), embedding=embedding, persist_directory=persist_directory ) class CustomRetriever(BaseRetriever): vectorstores:Chroma retriever:vectordb.as_retriever() def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> List[Document]: # Use your existing retriever to get the documents documents = self.retriever.get_relevant_documents(query, callbacks=run_manager.get_child()) # Get page content docs_content = [] for i in range(len(documents)): docs_content.append(documents[i].page_content) model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') # So we create the respective sentence combinations sentence_combinations = [[query, document] for document in docs_content] # Compute the similarity scores for these combinations similarity_scores = model.predict(sentence_combinations) # Sort the scores in decreasing order sim_scores_argsort = reversed(np.argsort(similarity_scores)) # Store the rerank document in new list docs = [] for idx in sim_scores_argsort: docs.append(documents[idx]) docs_top_2 = docs[0:2] return docs_top_2 llm = URALLM() custom_retriever = CustomRetriever(vectorstores = vectordb,retriever = vectordb.as_retriever(search_kwargs={"k": 50})) # Build prompt template = """[INST] <> Bạn là một chatbot hỗ trợ các quy định học vụ của trường Đại học Bách Khoa - ĐHQG TP.HCM. Bạn sử dụng văn bản được cung cấp để trả lời câu hỏi cho người dùng. Không sử dụng bất kỳ thông tin nào khác ngoài văn bản đã cho. Trả lời đầy đủ và ngắn gọn nhất có thể. Không đề cập tên riêng trong câu trả lời. Không chứa các ký tự: "-/", "]", "/", "-" trong câu trả lời. <> Văn bản: {context} Câu hỏi: {question} Câu trả lời: [/INST]""" QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context", "question"],template=template,) # Run chain from langchain.chains import RetrievalQA qa_chain = RetrievalQA.from_chain_type(llm, verbose=False, # retriever=vectordb.as_retriever(), retriever=custom_retriever, return_source_documents=True, chain_type_kwargs={"prompt": QA_CHAIN_PROMPT}) def remove_special_characters(text): text = text.replace('].', '') text = text.replace('/.', '') text = text.replace('/.-', '') text = text.replace('-', '') return text def rag(question: str) -> str: # call QA chain response = qa_chain({"query": question}) return remove_special_characters(response["result"])