Zwea Htet
fixed llama package issue
1230ae3
raw
history blame
2.24 kB
import os
from json import dumps, loads
import numpy as np
import pandas as pd
from dotenv import load_dotenv
from llama_index import (Document, GPTVectorStoreIndex, LLMPredictor,
PromptHelper, ServiceContext, StorageContext,
load_index_from_storage)
from transformers import AutoModelForCausalLM, AutoTokenizer
from utils.customLLM import CustomLLM
load_dotenv()
# get model
model_name = "bigscience/bloom-560m"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, config='T5Config')
# define prompt helper
# set maximum input size
context_window = 2048
# set number of output tokens
num_output = 525
# set maximum chunk overlap
chunk_overlap_ratio = 0.2
prompt_helper = PromptHelper(context_window, num_output, chunk_overlap_ratio)
# define llm
llm_predictor = LLMPredictor(llm=CustomLLM(model, tokenizer))
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper)
def prepare_data(file_path:str):
df = pd.read_json(file_path)
df = df.replace(to_replace="", value=np.nan).dropna(axis=0) # remove null values
parsed = loads(df.to_json(orient="records"))
documents = []
for item in parsed:
document = Document(item['paragraphText'],
item['_id']['$oid'],
extra_info={"chapter": item['chapter'],
"article": item['article'],
"title": item['title']})
documents.append(document)
return documents
def initialize_index(index_name):
file_path = f"./vectorStores/{index_name}"
if os.path.exists(file_path):
# rebuild storage context
storage_context = StorageContext.from_defaults(persist_dir=file_path)
# load index
index = load_index_from_storage(storage_context)
return GPTVectorStoreIndex.load_from_disk(file_path)
else:
documents = prepare_data(r"./assets/regItems.json")
index = GPTVectorStoreIndex.from_documents(documents, service_context=service_context)
index.storage_context.persist(file_path)
return index