import os import gradio as gr from datasets import load_dataset videocon_human = load_dataset('csv', data_files='videocon_human.csv') print(videocon_human) data_human = videocon_human['train'] print(data_human[0]) df = data_human.to_pandas() cols = list(df.columns) df = df.reindex(columns=cols) LINES_NUMBER = 20 def display_df(): df_images = df.head(LINES_NUMBER) return df_images def display_next(dataframe, end): start = int(end or len(dataframe)) end = int(start) + int(LINES_NUMBER) global df if end >= len(df) - 1: start = 0 end = LINES_NUMBER df = df.sample(frac=1) print(f"Shuffle") df_images = df.iloc[start:end] assert len(df_images) == LINES_NUMBER return df_images, end initial_dataframe = display_df() # Gradio Blocks with gr.Blocks() as demo: gr.Markdown("