import torch import torch.nn as nn from torch.nn import Module as Module from collections import OrderedDict from pipeline.models.tresnet.layers.anti_aliasing import AntiAliasDownsampleLayer from .layers.avg_pool import FastAvgPool2d from .layers.general_layers import SEModule, SpaceToDepthModule from inplace_abn import InPlaceABN, ABN import torch.nn.functional as F def InplacABN_to_ABN(module: nn.Module) -> nn.Module: # convert all InplaceABN layer to bit-accurate ABN layers. if isinstance(module, InPlaceABN): module_new = ABN(module.num_features, activation=module.activation, activation_param=module.activation_param) for key in module.state_dict(): module_new.state_dict()[key].copy_(module.state_dict()[key]) module_new.training = module.training module_new.weight.data = module_new.weight.abs() + module_new.eps return module_new for name, child in reversed(module._modules.items()): new_child = InplacABN_to_ABN(child) if new_child != child: module._modules[name] = new_child return module class bottleneck_head(nn.Module): def __init__(self, num_features, num_classes, bottleneck_features=200): super(bottleneck_head, self).__init__() self.embedding_generator = nn.ModuleList() self.embedding_generator.append(nn.Linear(num_features, bottleneck_features)) self.embedding_generator = nn.Sequential(*self.embedding_generator) self.FC = nn.Linear(bottleneck_features, num_classes) def forward(self, x): self.embedding = self.embedding_generator(x) logits = self.FC(self.embedding) return logits def conv2d(ni, nf, stride): return nn.Sequential( nn.Conv2d(ni, nf, kernel_size=3, stride=stride, padding=1, bias=False), nn.BatchNorm2d(nf), nn.ReLU(inplace=True) ) def conv2d_ABN(ni, nf, stride, activation="leaky_relu", kernel_size=3, activation_param=1e-2, groups=1): return nn.Sequential( nn.Conv2d(ni, nf, kernel_size=kernel_size, stride=stride, padding=kernel_size // 2, groups=groups, bias=False), InPlaceABN(num_features=nf, activation=activation, activation_param=activation_param) ) class BasicBlock(Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True, anti_alias_layer=None): super(BasicBlock, self).__init__() if stride == 1: self.conv1 = conv2d_ABN(inplanes, planes, stride=1, activation_param=1e-3) else: if anti_alias_layer is None: self.conv1 = conv2d_ABN(inplanes, planes, stride=2, activation_param=1e-3) else: self.conv1 = nn.Sequential(conv2d_ABN(inplanes, planes, stride=1, activation_param=1e-3), anti_alias_layer(channels=planes, filt_size=3, stride=2)) self.conv2 = conv2d_ABN(planes, planes, stride=1, activation="identity") self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride reduce_layer_planes = max(planes * self.expansion // 4, 64) self.se = SEModule(planes * self.expansion, reduce_layer_planes) if use_se else None def forward(self, x): if self.downsample is not None: residual = self.downsample(x) else: residual = x out = self.conv1(x) out = self.conv2(out) if self.se is not None: out = self.se(out) out += residual out = self.relu(out) return out class Bottleneck(Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True, anti_alias_layer=None): super(Bottleneck, self).__init__() self.conv1 = conv2d_ABN(inplanes, planes, kernel_size=1, stride=1, activation="leaky_relu", activation_param=1e-3) if stride == 1: self.conv2 = conv2d_ABN(planes, planes, kernel_size=3, stride=1, activation="leaky_relu", activation_param=1e-3) else: if anti_alias_layer is None: self.conv2 = conv2d_ABN(planes, planes, kernel_size=3, stride=2, activation="leaky_relu", activation_param=1e-3) else: self.conv2 = nn.Sequential(conv2d_ABN(planes, planes, kernel_size=3, stride=1, activation="leaky_relu", activation_param=1e-3), anti_alias_layer(channels=planes, filt_size=3, stride=2)) self.conv3 = conv2d_ABN(planes, planes * self.expansion, kernel_size=1, stride=1, activation="identity") self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride reduce_layer_planes = max(planes * self.expansion // 8, 64) self.se = SEModule(planes, reduce_layer_planes) if use_se else None def forward(self, x): if self.downsample is not None: residual = self.downsample(x) else: residual = x out = self.conv1(x) out = self.conv2(out) if self.se is not None: out = self.se(out) out = self.conv3(out) out = out + residual # no inplace out = self.relu(out) return out class TResNet(Module): def __init__(self, layers, in_chans=3, num_classes=1000, width_factor=1.0, do_bottleneck_head=False,bottleneck_features=512): super(TResNet, self).__init__() # Loss function self.loss_func = F.binary_cross_entropy_with_logits # JIT layers space_to_depth = SpaceToDepthModule() anti_alias_layer = AntiAliasDownsampleLayer global_pool_layer = FastAvgPool2d(flatten=True) # TResnet stages self.inplanes = int(64 * width_factor) self.planes = int(64 * width_factor) conv1 = conv2d_ABN(in_chans * 16, self.planes, stride=1, kernel_size=3) layer1 = self._make_layer(BasicBlock, self.planes, layers[0], stride=1, use_se=True, anti_alias_layer=anti_alias_layer) # 56x56 layer2 = self._make_layer(BasicBlock, self.planes * 2, layers[1], stride=2, use_se=True, anti_alias_layer=anti_alias_layer) # 28x28 layer3 = self._make_layer(Bottleneck, self.planes * 4, layers[2], stride=2, use_se=True, anti_alias_layer=anti_alias_layer) # 14x14 layer4 = self._make_layer(Bottleneck, self.planes * 8, layers[3], stride=2, use_se=False, anti_alias_layer=anti_alias_layer) # 7x7 # body self.body = nn.Sequential(OrderedDict([ ('SpaceToDepth', space_to_depth), ('conv1', conv1), ('layer1', layer1), ('layer2', layer2), ('layer3', layer3), ('layer4', layer4)])) # head self.embeddings = [] self.global_pool = nn.Sequential(OrderedDict([('global_pool_layer', global_pool_layer)])) self.num_features = (self.planes * 8) * Bottleneck.expansion if do_bottleneck_head: fc = bottleneck_head(self.num_features, num_classes, bottleneck_features=bottleneck_features) else: fc = nn.Linear(self.num_features , num_classes) self.head = nn.Sequential(OrderedDict([('fc', fc)])) # model initilization for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='leaky_relu') elif isinstance(m, nn.BatchNorm2d) or isinstance(m, InPlaceABN): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # residual connections special initialization for m in self.modules(): if isinstance(m, BasicBlock): m.conv2[1].weight = nn.Parameter(torch.zeros_like(m.conv2[1].weight)) # BN to zero if isinstance(m, Bottleneck): m.conv3[1].weight = nn.Parameter(torch.zeros_like(m.conv3[1].weight)) # BN to zero if isinstance(m, nn.Linear): m.weight.data.normal_(0, 0.01) def _make_layer(self, block, planes, blocks, stride=1, use_se=True, anti_alias_layer=None): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: layers = [] if stride == 2: # avg pooling before 1x1 conv layers.append(nn.AvgPool2d(kernel_size=2, stride=2, ceil_mode=True, count_include_pad=False)) layers += [conv2d_ABN(self.inplanes, planes * block.expansion, kernel_size=1, stride=1, activation="identity")] downsample = nn.Sequential(*layers) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, use_se=use_se, anti_alias_layer=anti_alias_layer)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append( block(self.inplanes, planes, use_se=use_se, anti_alias_layer=anti_alias_layer)) return nn.Sequential(*layers) def forward_train(self, x, target): x = self.body(x) self.embeddings = self.global_pool(x) logits = self.head(self.embeddings) loss = self.loss_func(logits, target, reduction="mean") return logits, loss def forward_test(self, x): x = self.body(x) self.embeddings = self.global_pool(x) logits = self.head(self.embeddings) return logits def forward(self, x, target=None): if target is not None: return self.forward_train(x, target) else: return self.forward_test(x) def TResnetM(num_classes): """Constructs a medium TResnet model. """ in_chans = 3 model = TResNet(layers=[3, 4, 11, 3], num_classes=num_classes, in_chans=in_chans) return model def TResnetL(num_classes): """Constructs a large TResnet model. """ in_chans = 3 do_bottleneck_head = False model = TResNet(layers=[4, 5, 18, 3], num_classes=num_classes, in_chans=in_chans, width_factor=1.2, do_bottleneck_head=do_bottleneck_head) return model def TResnetXL(num_classes): """Constructs a xlarge TResnet model. """ in_chans = 3 model = TResNet(layers=[4, 5, 24, 3], num_classes=num_classes, in_chans=in_chans, width_factor=1.3) return model