Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
"""ASL taken from https://github.com/Alibaba-MIIL/ASL""" | |
# Usage | |
# global criterion_asl | |
# criterion_asl = AsymmetricLoss(gamma_neg=4, gamma_pos=0, clip=0.05, disable_torch_grad_focal_loss=True) | |
# loss3 = criterion_asl(pred1, pred2) | |
class AsymmetricLoss(nn.Module): | |
def __init__(self, gamma_neg=4, gamma_pos=1, clip=0.05, eps=1e-8, disable_torch_grad_focal_loss=True): | |
super(AsymmetricLoss, self).__init__() | |
self.gamma_neg = gamma_neg | |
self.gamma_pos = gamma_pos | |
self.clip = clip | |
self.disable_torch_grad_focal_loss = disable_torch_grad_focal_loss | |
self.eps = eps | |
def forward(self, x, y): | |
"""" | |
Parameters | |
---------- | |
x: input logits | |
y: targets (multi-label binarized vector) | |
""" | |
# Calculating Probabilities | |
x_sigmoid = torch.sigmoid(x) | |
xs_pos = x_sigmoid | |
xs_neg = 1 - x_sigmoid | |
# Asymmetric Clipping | |
if self.clip is not None and self.clip > 0: | |
xs_neg = (xs_neg + self.clip).clamp(max=1) | |
# Basic CE calculation | |
los_pos = y * torch.log(xs_pos.clamp(min=self.eps)) | |
los_neg = (1 - y) * torch.log(xs_neg.clamp(min=self.eps)) | |
loss = los_pos + los_neg | |
# Asymmetric Focusing | |
if self.gamma_neg > 0 or self.gamma_pos > 0: | |
if self.disable_torch_grad_focal_loss: | |
torch.set_grad_enabled(False) | |
pt0 = xs_pos * y | |
pt1 = xs_neg * (1 - y) # pt = p if t > 0 else 1-p | |
pt = pt0 + pt1 | |
one_sided_gamma = self.gamma_pos * y + self.gamma_neg * (1 - y) | |
one_sided_w = torch.pow(1 - pt, one_sided_gamma) | |
if self.disable_torch_grad_focal_loss: | |
torch.set_grad_enabled(True) | |
loss *= one_sided_w | |
return -loss.sum() |