import os import uuid import zipfile import pandas as pd import seaborn as sns import streamlit as st import matplotlib.pyplot as plt from importlib import resources as pkg_resources from openfactcheck.app.utils import metric_card from openfactcheck.core.base import OpenFactCheck from openfactcheck.templates import factchecker as templates_dir # Import solver configuration templates claims_templates_path = str(pkg_resources.files(templates_dir) / "claims.jsonl") documents_templates_path = str(pkg_resources.files(templates_dir) / "documents.jsonl") def evaluate_factchecker(ofc: OpenFactCheck): """ This function creates a Streamlit app to evaluate a Factchecker. """ # Initialize the FactChecker Evaluator fc_evaluator = ofc.FactCheckerEvaluator st.write("This is where you can evaluate the factuality of a FactChecker.") # Display the instructions st.write("Download the benchmark evaluate the factuality of a FactChecker.") # Check if the file exists if os.path.exists(claims_templates_path) and os.path.exists(documents_templates_path): # Create a ZIP file in memory from io import BytesIO memory_file = BytesIO() with zipfile.ZipFile(memory_file, 'w') as zf: # Define the name of the file within the ZIP archive zip_path = os.path.basename(claims_templates_path) # 'claims.jsonl' # Add file to the ZIP file zf.write(claims_templates_path, arcname=zip_path) # TODO: documents.jsonl functionality is still in development # zip_path = os.path.basename(documents_templates_path) # 'documents.jsonl' # # Add file to the ZIP file # zf.write(documents_templates_path, arcname=zip_path) # Reset pointer to start of the memory file memory_file.seek(0) # Create a download button and the file will be downloaded when clicked btn = st.download_button( label="Download", data=memory_file, file_name="openfactcheck_factchecker_benchmark.zip", mime="application/zip" ) else: st.error("File not found.") # Display the instructions st.write("Upload the FactChecker responses as a JSON file below to evaluate the factuality.") # Upload the model output uploaded_file = st.file_uploader("Upload", type=["csv"], label_visibility="collapsed") # Check if the file is uploaded if uploaded_file is None: st.info("Please upload a CSV file.") return # Check if the file is a CSV file if uploaded_file.type != "text/csv": st.error("Invalid file format. Please upload a CSV file.") return # Read the CSV file uploaded_data = pd.read_csv(uploaded_file) def update_first_name(): st.session_state.first_name = st.session_state.input_first_name def update_last_name(): st.session_state.last_name = st.session_state.input_last_name def update_email(): st.session_state.email = st.session_state.input_email def update_organization(): st.session_state.organization = st.session_state.input_organization def update_factchecker(): st.session_state.factchecker = st.session_state.input_factchecker def update_include_in_leaderboard(): st.session_state.include_in_leaderboard = st.session_state.input_include_in_leaderboard # Display instructions st.write("Please provide the following information to be included in the leaderboard.") # Create text inputs to enter the user information st.session_state.id = uuid.uuid4().hex st.text_input("First Name", key="input_first_name", on_change=update_first_name) st.text_input("Last Name", key="input_last_name", on_change=update_last_name) st.text_input("Email", key="input_email", on_change=update_email) st.text_input("FactChecker Name", key="input_factchecker", on_change=update_factchecker) st.text_input("Organization (Optional)", key="input_organization", on_change=update_organization) st.checkbox("Please check this box if you want your FactChecker to be included in the leaderboard.", key="input_include_in_leaderboard", on_change=update_include_in_leaderboard) if st.button("Evaluate FactChecker"): # Display a success message st.success("User information saved successfully.") # Display a waiting message with st.status("Evaluating factuality of the FactChecker...", expanded=True) as status: result = fc_evaluator.evaluate(input_path=uploaded_data, eval_type="claims") status.update(label="FactChecker evaluated...", state="complete", expanded=False) # Display the evaluation report st.write("### Evaluation report:") col1, col2 = st.columns(2, gap="large") with col1: # Create the heatmap classes = ['True', 'False'] fig = plt.figure() sns.heatmap(fc_evaluator.confusion_matrix, annot=True, fmt="d", cmap="Blues", xticklabels=classes, yticklabels=classes) plt.ylabel('Actual Class') plt.xlabel('Predicted Class') st.pyplot(fig) with col2: # Display the metrics accuracy = fc_evaluator.results["True_as_positive"]["accuracy"] if accuracy > 0.75 and accuracy <= 1: # Green background metric_card(label="Accuracy", value=f"{accuracy:.2%}", background_color="#D4EDDA", border_left_color="#28A745") elif accuracy > 0.25 and accuracy <= 0.75: # Yellow background metric_card(label="Accuracy", value=f"{accuracy:.2%}", background_color="#FFF3CD", border_left_color="#FFC107") else: # Red background metric_card(label="Accuracy", value=f"{accuracy:.2%}", background_color="#F8D7DA", border_left_color="#DC3545") sub_col1, sub_col2, sub_col3 = st.columns(3) with sub_col1: metric_card(label="Total Time", value=fc_evaluator.results["total_time"]) with sub_col2: metric_card(label="Total Cost", value=fc_evaluator.results["total_cost"]) with sub_col3: metric_card(label="Number of Samples", value=fc_evaluator.results["num_samples"]) st.text("Report:\n" + fc_evaluator.classification_report)