from core.fact_check_state import FactCheckerState from core.task_solver import StandardTaskSolver from core import register_solver from .ftool_utils.chat_api import OpenAIChat import yaml import os import json ## # # Factool Claim Examiner # # Notes: # - This solver is used to examine the claims in a response. # ## @register_solver("factool_claim_examiner", "evidences", "claim_info") class FactoolClaimExaminer(StandardTaskSolver): def __init__(self, args): super().__init__(args) self.gpt_model = self.global_config.get("llm_in_use", "gpt-4") self.path_save_stance = args.get("path_save_stance", "evidence_stance.json") self.verifications = None self.gpt = OpenAIChat(self.gpt_model) self.verification_prompt = yaml.load( open( os.path.join( os.path.dirname(os.path.abspath(__file__)), "ftool_utils/prompts.yaml", ), "r", ), yaml.FullLoader, )["verification"] # async def coro (self, factool_instance, claims_in_response, evidences): # self.verifications = await factool_instance.pipelines["kbqa_online"]._verification(claims_in_response, evidences) def __call__(self, state: FactCheckerState, *args, **kwargs): claim_info = state.get(self.input_name) # Recover the Factool objects claims_in_response = [] queires = [] search_outputs_for_claims = [] for key, pair in claim_info.items(): claim = key or pair["claim"] claims_in_response.append({"claim": claim}) queires.append(pair["automatic_queries"]) search_outputs_for_claim = [] for evidence in pair["evidence_list"]: search_outputs_for_claim.append( { "content": evidence["web_page_snippet_manual"], "source": evidence["url"], } ) search_outputs_for_claims.append(search_outputs_for_claim) claims_with_evidences = {k: [u['web_page_snippet_manual'] for u in claim_info[k]['evidence_list']] for k in claim_info.keys()} verifications = self._verification(claims_with_evidences) # evidences = [ # [output["content"] for output in search_outputs_for_claim] # for search_outputs_for_claim in search_outputs_for_claims # ] # Attach the verifications (stances) to the claim_info for index, (key, pair) in enumerate(claim_info.items()): # print(f'Verifications: {verifications}\n') # print(f'Verification for claim {key}: Index {index}\n') # print(f'Verification for claim {key}: {verifications[index]}\n') # print(f'Verification for claim {key}: Type = {type(verifications[index])}\n') stance = "" if ( type(verifications[index]) == None or verifications[index] == "None" ): stance = claims_in_response[index]["claim"] else: stance = ( "" if ( verifications[index]["error"] == "None" or len(verifications[index]["error"]) == 0 ) else (verifications[index]["error"] + " ") ) stance += ( "" if ( verifications[index]["reasoning"] == "None" or len(verifications[index]["reasoning"]) == 0 ) else verifications[index]["reasoning"] ) stance += ( claims_in_response[index]["claim"] if ( verifications[index]["correction"] == "None" or len(verifications[index]["correction"]) == 0 ) else (" " + verifications[index]["correction"]) ) claim_info[key]["stances"] = [stance] for j in range(len(claim_info[key]["evidence_list"])): claim_info[key]["evidence_list"][j]["stance"] = stance # write to json file # Serializing json json_object = json.dumps(claim_info, indent=4) # Writing to sample.json with open(self.path_save_stance, "w") as outfile: outfile.write(json_object) # print(claim_info) state.set(self.output_name, claim_info) return True, state def _verification(self, claims_with_evidences): messages_list = [ [ {"role": "system", "content": self.verification_prompt['system']}, {"role": "user", "content": self.verification_prompt['user'].format(claim=claim, evidence=str( [e[1] for e in evidence]))}, ] for claim, evidence in claims_with_evidences.items() ] return self.gpt.run(messages_list, dict)