import os import sys import uuid import tqdm import json import traceback from pathlib import Path from typing import Callable from openfactcheck.lib.logger import logger from openfactcheck.lib.config import OpenFactCheckConfig from openfactcheck.core.solver import SOLVER_REGISTRY, Solver from openfactcheck.core.state import FactCheckerState class OpenFactCheck: """ OpenFactCheck class to evaluate the factuality of a response using a pipeline of solvers. Parameters ---------- config : OpenFactCheckConfig An instance of OpenFactCheckConfig containing the configuration settings for OpenFactCheck. Attributes ---------- logger : Logger An instance of the logger to log messages. config : OpenFactCheckConfig An instance of OpenFactCheckConfig containing the configuration settings for OpenFactCheck. solver_configs : dict A dictionary containing the configuration settings for the solvers. pipeline : list A list of solvers to be included in the pipeline. output_path : str The path to the output directory where the results will be stored. Methods ------- load_solvers(solver_paths) Load solvers from the given paths. list_solvers() List all registered solvers. list_claimprocessors() List all registered claim processors. list_retrievers() List all registered retrievers. list_verifiers() List all registered verifiers. init_solver(solver_name, args) Initialize a solver with the given configuration. init_solvers() Initialize all registered solvers. init_pipeline() Initialize the pipeline with the given configuration. init_pipeline_manually(pipeline) Initialize the pipeline with the given configuration. persist_output(state, idx, solver_name, cont, sample_name=0) Persist the output of the solver. read_output(sample_name) Read the output file for the given sample. remove_output(sample_name) Remove the output file for the given sample. __call__(response, question, callback_fun, **kwargs) Evaluate the response using the pipeline. Examples -------- >>> config = OpenFactCheckConfig("config.json") >>> ofc = OpenFactCheck(config) >>> response, sample_name = ofc("This is a sample response.") >>> output = ofc.read_output(sample_name) >>> ofc.remove_output(sample_name) """ def __init__(self, config: OpenFactCheckConfig): """ Initialize OpenFactCheck with the given configuration. Parameters ---------- config : OpenFactCheckConfig An instance of OpenFactCheckConfig containing the configuration settings for OpenFactCheck. """ self.logger = logger self.config = config # Initialize attributes self.solver_configs = self.config.solver_configs self.pipeline = self.config.pipeline self.output_path = os.path.abspath(self.config.output_path) # Load and register solvers self.load_solvers(self.config.solver_paths) self.logger.info(f"Loaded solvers: {list(self.list_solvers().keys())}") # Initialize the pipeline self.pipeline = self.init_pipeline() self.logger.info("-------------- OpenFactCheck Initialized ----------------") self.logger.info("Pipeline:") for idx, (name, (solver, iname, oname)) in enumerate(self.pipeline.items()): self.logger.info(f"{idx}-{name} ({iname} -> {oname})") self.logger.info("---------------------------------------------------------") @staticmethod def load_solvers(solver_paths): """ Load solvers from the given paths """ for solver_path in solver_paths: abs_path = Path(solver_path).resolve() if abs_path.is_dir(): sys.path.append(str(abs_path.parent)) Solver.load(str(abs_path), abs_path.name) @staticmethod def list_solvers(): """ List all registered solvers """ return SOLVER_REGISTRY @staticmethod def list_claimprocessors(): """ List all registered claim processors """ # Get all claim processors claimprocessors = {} for solver, value in SOLVER_REGISTRY.items(): if "claimprocessor" in solver: claimprocessors[solver] = value return claimprocessors @staticmethod def list_retrievers(): """ List all registered retrievers """ # Get all retrievers retrievers = {} for solver, value in SOLVER_REGISTRY.items(): if "retriever" in solver: retrievers[solver] = value return retrievers @staticmethod def list_verifiers(): """ List all registered verifiers """ # Get all verifiers verifiers = {} for solver, value in SOLVER_REGISTRY.items(): if "verifier" in solver: verifiers[solver] = value return verifiers def init_solver(self, solver_name, args): """ Initialize a solver with the given configuration """ # Check if the solver is registered if solver_name not in SOLVER_REGISTRY: logger.error(f"{solver_name} not in SOLVER_REGISTRY") raise RuntimeError(f"{solver_name} not in SOLVER_REGISTRY") # Initialize the solver solver_cls = SOLVER_REGISTRY[solver_name] solver_cls.input_name = args.get("input_name", solver_cls.input_name) solver_cls.output_name = args.get("output_name", solver_cls.output_name) logger.info(f"Solver {solver_cls(args)} initialized") return solver_cls(args), solver_cls.input_name, solver_cls.output_name def init_solvers(self): """ Initialize all registered solvers """ solvers = {} for k, v in self.solver_configs.items(): solver, input_name, output_name = self.init_solver(k, v) solvers[k] = (solver, input_name, output_name) return solvers def init_pipeline(self): """ Initialize the pipeline with the given configuration """ pipeline = {} for required_solver in self.config.pipeline: if required_solver not in self.solver_configs: logger.error(f"{required_solver} not in solvers config") raise RuntimeError(f"{required_solver} not in solvers config") solver, input_name, output_name = self.init_solver(required_solver, self.solver_configs[required_solver]) pipeline[required_solver] = (solver, input_name, output_name) return pipeline def init_pipeline_manually(self, pipeline: list): """ Initialize the pipeline with the given configuration Parameters ---------- pipeline : list A list of solvers to be included in the pipeline """ self.pipeline = {} for required_solver in pipeline: if required_solver not in self.solver_configs: raise RuntimeError(f"{required_solver} not in solvers config") solver, input_name, output_name = self.init_solver(required_solver, self.solver_configs[required_solver]) self.pipeline[required_solver] = (solver, input_name, output_name) def persist_output(self, state: FactCheckerState, idx, solver_name, cont, sample_name=0): result = { "idx": idx, "solver": solver_name, "continue": cont, "state": state.to_dict() } with open(os.path.join(self.output_path, f'{sample_name}.jsonl'), 'a', encoding="utf-8") as f: f.write(json.dumps(result, ensure_ascii=False) + '\n') def read_output(self, sample_name): """ Read the output file for the given sample """ with open(os.path.join(self.output_path, f'{sample_name}.jsonl'), 'r', encoding="utf-8") as f: return [json.loads(line) for line in f] def remove_output(self, sample_name): """ Remove the output file for the given sample """ os.remove(os.path.join(self.output_path, f'{sample_name}.jsonl')) def __call__(self, response: str, question: str = None, stream: bool = False, callback: Callable = None, **kwargs): """ Evaluate the response using the pipeline """ def evaluate_response(): # Check if sample_name is provided in kwargs else generate a random one sample_name = kwargs.get("sample_name", str(uuid.uuid4().hex[:6])) # Initialize the state solver_output = FactCheckerState(question=question, response=response) # Initialize the output name output_name = "response" for idx, (name, (solver, input_name, output_name)) in tqdm.tqdm(enumerate(self.pipeline.items()), total=len(self.pipeline)): logger.info(f"Invoking solver: {idx}-{name}") logger.info(f"State content: {solver_output}") try: # Solver input is the output of the previous solver solver_input = solver_output # Run the solver cont, solver_output = solver(solver_input, **kwargs) # Persist the output logger.debug(f"Latest result: {solver_output}") if callback: callback( index=idx, sample_name=sample_name, solver_name=name, input_name=input_name, output_name=output_name, input=solver_input.__dict__, output=solver_output.__dict__, continue_run=cont ) # Stream the output if stream: yield { "index": idx, "solver_name": name, "input_name": input_name, "output_name": output_name, "input": solver_input.__dict__, "output": solver_output.__dict__, "continue_run": cont } self.persist_output(solver_output, idx, name, cont, sample_name=sample_name) except: logger.error(f"Error at {traceback.format_exc()}") cont = False output_name = input_name # Break if the solver returns False if not cont: logger.info(f"Break at {name}") break if not stream: return solver_output.get(output_name) # Execute the generator if stream is True, otherwise process normally return evaluate_response()