import os import uuid import zipfile import pandas as pd import streamlit as st from importlib import resources as pkg_resources from openfactcheck.core.base import OpenFactCheck from openfactcheck.app.utils import metric_card from openfactcheck.templates import llm as templates_dir # Import solver configuration templates questions_templates_path = str(pkg_resources.files(templates_dir) / "questions.csv") def evaluate_llm(ofc: OpenFactCheck): """ This function creates a Streamlit app to evaluate the factuality of a LLM. """ # Initialize the LLM Evaluator llm_evaluator = ofc.LLMEvaluator st.write("This is where you can evaluate the factuality of a LLM.") # Display the instructions st.write("Download the questions and instructions to evaluate the factuality of a LLM.") # Check if the file exists if os.path.exists(questions_templates_path): # Create a ZIP file in memory from io import BytesIO memory_file = BytesIO() with zipfile.ZipFile(memory_file, 'w') as zf: # Define the name of the file within the ZIP archive zip_path = os.path.basename(questions_templates_path) # 'questions.csv' # Add file to the ZIP file zf.write(questions_templates_path, arcname=zip_path) # Reset pointer to start of the memory file memory_file.seek(0) # Create a download button and the file will be downloaded when clicked btn = st.download_button( label="Download", data=memory_file, file_name="openfactcheck_llm_benchmark.zip", mime="application/zip" ) else: st.error("File not found.") # Display the instructions st.write("Upload the model responses as a JSON file below to evaluate the factuality.") # Upload the model output uploaded_file = st.file_uploader("Upload", type=["csv"], label_visibility="collapsed") # Check if the file is uploaded if uploaded_file is None: st.info("Please upload a CSV file.") return # Check if the file is a CSV file if uploaded_file.type != "text/csv": st.error("Invalid file format. Please upload a CSV file.") return # Read the CSV file uploaded_data = pd.read_csv(uploaded_file) # Ask user to select datasets they want to evaluate on st.write("Please select the datasets you want to evaluate the LLM on.") datasets = st.multiselect("Select datasets", ["snowballing", "selfaware", "freshqa", "factoolqa", "felm-wk", "factcheck-bench", "factscore-bio"]) def update_first_name(): st.session_state.first_name = st.session_state.input_first_name def update_last_name(): st.session_state.last_name = st.session_state.input_last_name def update_email(): st.session_state.email = st.session_state.input_email def update_organization(): st.session_state.organization = st.session_state.input_organization def update_llm_model(): st.session_state.llm_model = st.session_state.input_llm_model def update_include_in_leaderboard(): st.session_state.include_in_leaderboard = st.session_state.input_include_in_leaderboard # Display instructions st.write("Please provide the following information to be included in the leaderboard.") # Create text inputs to enter the user information st.session_state.id = llm_evaluator.run_id st.text_input("First Name", key="input_first_name", on_change=update_first_name) st.text_input("Last Name", key="input_last_name", on_change=update_last_name) st.text_input("Email", key="input_email", on_change=update_email) st.text_input("LLM Model Name", key="input_llm_model", on_change=update_llm_model) st.text_input("Organization (Optional)", key="input_organization", on_change=update_organization) # Create a checkbox to include the user in the leaderboard st.checkbox("Please check this box if you want your LLM to be included in the leaderboard.", key="input_include_in_leaderboard", on_change=update_include_in_leaderboard) if st.button("Evaluate LLM"): # Display a success message st.success("User information saved successfully.") # Display an information message st.info(f"""Please wait while we evaluate the factuality of the LLM. You will be able to download the evaluation report shortly, if you can wait. The report will also be delivered to your email address. Please note your ID {st.session_state.id}, This will be used to track your evaluation. If the report is not available, please contact the administrator and provide your ID.""") # Display a waiting message with st.status("Evaluating factuality of the LLM...", expanded=True) as status: # Evaluate the LLM results = llm_evaluator.evaluate(model_name=st.session_state.llm_model, input_path=uploaded_data, datasets=datasets, save_report=False) # Get plots st.write("Generating plots...") plots = llm_evaluator.generate_plots(save_plots=False) # Generate the evaluation report st.write("Generating evaluation report...") report_path = llm_evaluator.generate_report(report_path=f"{llm_evaluator.output_path}/{llm_evaluator.run_id}") status.update(label="LLM evaluated...", state="complete", expanded=False) # Display the plots st.write("### Evaluation Report") # If snowballing dataset is selected if "snowballing" in datasets: st.write("#### Evaluation on Snowballing Dataset") col1, col2, col3 = st.columns(3) with col1: st.pyplot(plots["snowballing"]["barplot"]) with col2: st.pyplot(plots["snowballing"]["cm"]) with col3: pass # If selfaware dataset is selected if "selfaware" in datasets: st.write("#### Evaluation on SelfAware Dataset") col1, col2, col3 = st.columns(3) with col1: st.pyplot(plots["selfaware"]["barplot"]) with col2: st.pyplot(plots["selfaware"]["cm"]) with col3: pass # If freshqa dataset is selected if "freshqa" in datasets: st.write("#### Evaluation on FreshQA Dataset") col1, col2, col3 = st.columns(3) with col1: st.pyplot(plots["freshqa"]["piechart"]) with col2: pass with col3: pass # If any of the free-text datasets are selected if any(dataset in ["factoolqa", "felm-wk", "factcheck-bench", "factscore-bio"] for dataset in datasets): st.write("#### Evaluation on Free-Text Datasets") st.pyplot(plots["freetext"]["barplot"]) # Generate the evaluation report st.write("### Download Evaluation Report") st.info("The report will also be sent to your email address.") # Load the evaluation report if os.path.exists(report_path): with open(report_path, "rb") as file: report_bytes = file.read() # Display the download button st.download_button( label="Download", data=report_bytes, file_name="llm_evaluation_report.pdf", mime="application/pdf" ) else: st.error("File not found.")