import csv import json import numpy as np from collections import Counter from typing import Dict, List, Any def save_to_file(text, filename='error_output.txt'): """Save a string to a file line by line.""" with open(filename, 'a', encoding='utf-8') as file: file.write(text + '\n') def majority_vote(input_list): # Use Counter to count occurrences of each element counter = Counter(input_list) # Find the element with the maximum count (majority) majority_element = max(counter, key=counter.get) # Return the majority element return majority_element def is_float(string): if string.replace(".", "").isnumeric(): return True else: return False def save_json(dictionary: Dict[str, Any], save_dir: str) -> None: # Serializing json json_object = json.dumps(dictionary, indent=4, ensure_ascii=False) # Writing to sample.json with open(save_dir, "w", encoding='utf-8') as outfile: outfile.write(json_object) def read_json(filepath: str) -> Dict[str, Any]: data = {} with open(filepath, 'r', encoding='utf-8') as file: data = json.load(file) return data def list_to_dict(data: List[Dict[str, Any]]) -> Dict[int, Any]: temp = {} for i, d in enumerate(data): temp[i] = d return temp def load_jsonl(path): data = [] with open(path, 'r', encoding='utf-8') as reader: for line in reader: data.append(json.loads(line)) return data # def load_jsonl(input_path) -> list: # """ # Read list of objects from a JSON lines file. # """ # data = [] # with open(input_path, 'r', encoding='utf-8') as f: # for line in f: # data.append(json.loads(line.rstrip('\n|\r'))) # print('Loaded {} records from {}'.format(len(data), input_path)) # return data def dump_jsonl(data, output_path, append=False): """ Write list of objects to a JSON lines file. """ mode = 'a+' if append else 'w' with open(output_path, mode, encoding='utf-8') as f: for line in data: json_record = json.dumps(line, ensure_ascii=False) f.write(json_record + '\n') print('Wrote {} records to {}'.format(len(data), output_path)) def cosine(u, v): """based on embeddings and calculate cosine similarity""" return np.dot(u, v) / (np.linalg.norm(u) * np.linalg.norm(v)) def read_csv(input_file, quotechar=None): with open(input_file, "r", encoding="utf-8") as f: reader = csv.reader(f, delimiter="\t", quotechar=quotechar) lines = [] for line in reader: lines.append(line) return lines def save_csv(header, data, output_file): with open(output_file, 'w', encoding='UTF8', newline='') as f: writer = csv.writer(f, delimiter='\t') # write the header writer.writerow(header) # write multiple rows writer.writerows(data) def save_array(filename, embeddings): # save embeddings into file with open(filename, 'wb') as f: np.save(f, embeddings) def load_array(filename): with open(filename, 'rb') as f: a = np.load(f) return a def read_txt(input_file): with open(input_file, "r", encoding="utf-8") as f: return f.readlines() def save_txt(data, output_file): with open(output_file, "w", encoding="utf-8") as writer: writer.write("\n".join(data)) def clean_text(text): for mark in ['"', '-', '\t', ' ']: for i in [5, 4, 3, 2]: marks = mark * i text = text.replace(marks, '') return text