Hasan Iqbal commited on
Commit
80aaa07
·
unverified ·
1 Parent(s): 88f13ce

Edited README.md to include description of the project

Browse files
Files changed (2) hide show
  1. README.md +89 -1
  2. assets/architecture.png +0 -0
README.md CHANGED
@@ -10,7 +10,9 @@ pinned: false
10
 
11
  <p align="center">
12
  <img alt="OpenFactCheck Logo" src="https://raw.githubusercontent.com/hasaniqbal777/OpenFactCheck/main/assets/splash.png" height="120" />
13
- <p align="center">An Open-source Factuality Evaluation Demo for LLMs</p>
 
 
14
  </p>
15
 
16
  ---
@@ -32,8 +34,94 @@ pinned: false
32
  <a href="https://pypi.org/project/openfactcheck/">
33
  <img src="https://img.shields.io/pypi/v/openfactcheck.svg" alt="PyPI Latest Release">
34
  </a>
 
 
 
 
 
 
 
 
 
 
 
 
35
  </p>
36
 
37
  ## Overview
38
 
39
  OpenFactCheck is an open-source repository designed to facilitate the evaluation and enhancement of factuality in responses generated by large language models (LLMs). This project aims to integrate various fact-checking tools into a unified framework and provide comprehensive evaluation pipelines.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
  <p align="center">
12
  <img alt="OpenFactCheck Logo" src="https://raw.githubusercontent.com/hasaniqbal777/OpenFactCheck/main/assets/splash.png" height="120" />
13
+ <p align="center">An Open-source Factuality Evaluation Demo for LLMs
14
+ <br>
15
+ </p>
16
  </p>
17
 
18
  ---
 
34
  <a href="https://pypi.org/project/openfactcheck/">
35
  <img src="https://img.shields.io/pypi/v/openfactcheck.svg" alt="PyPI Latest Release">
36
  </a>
37
+ <a href="https://arxiv.org/abs/2405.05583"><img src="https://img.shields.io/badge/arXiv-2405.05583-B31B1B" alt="arXiv"></a>
38
+ <a href="https://zenodo.org/doi/10.5281/zenodo.13358664"><img src="https://zenodo.org/badge/829374815.svg" alt="DOI"></a>
39
+ </p>
40
+
41
+ ---
42
+
43
+ <p align="center">
44
+ <a href="#overview">Overview</a> •
45
+ <a href="#installation">Installation</a> •
46
+ <a href="#usage">Usage</a> •
47
+ <a href="https://huggingface.co/spaces/hasaniqbal777/OpenFactCheck">HuggingFace Demo</a> •
48
+ <a href="https://openfactcheck.readthedocs.io/">Documentation</a>
49
  </p>
50
 
51
  ## Overview
52
 
53
  OpenFactCheck is an open-source repository designed to facilitate the evaluation and enhancement of factuality in responses generated by large language models (LLMs). This project aims to integrate various fact-checking tools into a unified framework and provide comprehensive evaluation pipelines.
54
+
55
+ <img src="https://raw.githubusercontent.com/hasaniqbal777/OpenFactCheck/main/assets/architecture.png" width="100%">
56
+
57
+ ## Installation
58
+
59
+ You can install the package from PyPI using pip:
60
+
61
+ ```bash
62
+ pip install openfactcheck
63
+ ```
64
+
65
+ ## Usage
66
+
67
+ First, you need to initialize the OpenFactCheckConfig object and then the OpenFactCheck object.
68
+ ```python
69
+ from openfactcheck import OpenFactCheck, OpenFactCheckConfig
70
+
71
+ # Initialize the OpenFactCheck object
72
+ config = OpenFactCheckConfig()
73
+ ofc = OpenFactCheck(config)
74
+ ```
75
+
76
+ ### Response Evaluation
77
+
78
+ You can evaluate a response using the `ResponseEvaluator` class.
79
+
80
+ ```python
81
+ # Evaluate a response
82
+ result = ofc.ResponseEvaluator.evaluate(response: str)
83
+ ```
84
+
85
+ ### LLM Evaluation
86
+
87
+ We provide [FactQA](https://raw.githubusercontent.com/hasaniqbal777/OpenFactCheck/main/src/openfactcheck/templates/llm/questions.csv), a dataset of 6480 questions for evaluating LLMs. Onc you have the responses from the LLM, you can evaluate them using the `LLMEvaluator` class.
88
+
89
+ ```python
90
+ # Evaluate an LLM
91
+ result = ofc.LLMEvaluator.evaluate(model_name: str,
92
+ input_path: str)
93
+ ```
94
+
95
+ ### Checker Evaluation
96
+
97
+ We provide [FactBench](https://raw.githubusercontent.com/hasaniqbal777/OpenFactCheck/main/src/openfactcheck/templates/factchecker/claims.jsonl), a dataset of 4507 claims for evaluating fact-checkers. Once you have the responses from the fact-checker, you can evaluate them using the `CheckerEvaluator` class.
98
+
99
+ ```python
100
+ # Evaluate a fact-checker
101
+ result = ofc.CheckerEvaluator.evaluate(checker_name: str,
102
+ input_path: str)
103
+ ```
104
+
105
+ ## Cite
106
+
107
+ If you use OpenFactCheck in your research, please cite the following:
108
+
109
+ ```bibtex
110
+ @article{wang2024openfactcheck,
111
+ title = {OpenFactCheck: A Unified Framework for Factuality Evaluation of LLMs},
112
+ author = {Wang, Yuxia and Wang, Minghan and Iqbal, Hasan and Georgiev, Georgi and Geng, Jiahui and Nakov, Preslav},
113
+ journal = {arXiv preprint arXiv:2405.05583},
114
+ year = {2024}
115
+ }
116
+
117
+ @software{hasan_iqbal_2024_13358665,
118
+ author = {Hasan Iqbal},
119
+ title = {hasaniqbal777/OpenFactCheck: v0.3.0},
120
+ month = {aug},
121
+ year = {2024},
122
+ publisher = {Zenodo},
123
+ version = {v0.3.0},
124
+ doi = {10.5281/zenodo.13358665},
125
+ url = {https://doi.org/10.5281/zenodo.13358665}
126
+ }
127
+ ```
assets/architecture.png ADDED