import numpy as np import scipy.ndimage as nd import torch import torch.nn as nn import torch.nn.functional as F from utils.seg_opr.lovasz_losses import lovasz_softmax class JSD(nn.Module): def __init__(self): super(JSD, self).__init__() self.kl = nn.KLDivLoss(reduction='batchmean', log_target=True) def forward(self, p: torch.tensor, q: torch.tensor): p = F.softmax(p, dim=1) q = F.softmax(q, dim=1) m = (0.5 * (p + q)).log() return 0.5 * (self.kl(m, p.log()) + self.kl(m, q.log())) class MSE(nn.Module): def __init__(self): super(MSE, self).__init__() self.mse = nn.MSELoss(reduction="mean") def forward(self, p: torch.tensor, q: torch.tensor): p = F.softmax(p, dim=1) q = F.softmax(q, dim=1) return self.mse(p, q) class ProbOhemCrossEntropy2d(nn.Module): def __init__(self, ignore_label, reduction='mean', thresh=0.6, min_kept=256, down_ratio=1, use_weight=False): super(ProbOhemCrossEntropy2d, self).__init__() self.ignore_label = ignore_label self.thresh = float(thresh) self.min_kept = int(min_kept) self.down_ratio = down_ratio if use_weight: weight = torch.FloatTensor( [0.8373, 0.918, 0.866, 1.0345, 1.0166, 0.9969, 0.9754, 1.0489, 0.8786, 1.0023, 0.9539, 0.9843, 1.1116, 0.9037, 1.0865, 1.0955, 1.0865, 1.1529, 1.0507]) self.criterion = torch.nn.CrossEntropyLoss(reduction=reduction, weight=weight, ignore_index=ignore_label) else: self.criterion = torch.nn.CrossEntropyLoss(reduction=reduction, ignore_index=ignore_label) def forward(self, pred, target): b, c, h, w = pred.size() target = target.view(-1) valid_mask = target.ne(self.ignore_label) target = target * valid_mask.long() num_valid = valid_mask.sum() prob = F.softmax(pred, dim=1) prob = (prob.transpose(0, 1)).reshape(c, -1) if self.min_kept > num_valid: print('Labels: {} < {}'.format(num_valid, self.min_kept)) elif num_valid > 0: prob = prob.masked_fill_(~valid_mask, 1) mask_prob = prob[ target, torch.arange(len(target), dtype=torch.long)] threshold = self.thresh if self.min_kept > 0: index = mask_prob.argsort() threshold_index = index[min(len(index), self.min_kept) - 1] if mask_prob[threshold_index] > self.thresh: threshold = mask_prob[threshold_index] kept_mask = mask_prob.le(threshold) # 概率小于阈值的挖出来 (The probability is less than the threshold to be dug out) target = target * kept_mask.long() valid_mask = valid_mask * kept_mask # logger.info('Valid Mask: {}'.format(valid_mask.sum())) target = target.masked_fill_(~valid_mask, self.ignore_label) target = target.view(b, h, w) return self.criterion(pred, target) class FocalLoss(nn.Module): def __init__(self, gamma=2, alpha=None, ignore_label=255, size_average=True): super(FocalLoss, self).__init__() self.gamma = gamma self.size_average = size_average self.CE_loss = nn.CrossEntropyLoss(reduce=False, ignore_index=ignore_label, weight=alpha) def forward(self, output, target): logpt = self.CE_loss(output, target) pt = torch.exp(-logpt) loss = ((1-pt)**self.gamma) * logpt if self.size_average: return loss.mean() return loss.sum() class LovaszSoftmax(nn.Module): def __init__(self, classes='present', per_image=False, ignore_index=255): super(LovaszSoftmax, self).__init__() self.smooth = classes self.per_image = per_image self.ignore_index = ignore_index def forward(self, output, target): logits = F.softmax(output, dim=1) loss = lovasz_softmax(logits, target, ignore=self.ignore_index) return loss