#Copyright (C) 2022. Huawei Technologies Co., Ltd. All rights reserved. # #This program is free software; you can redistribute it and/or modify it under the terms of the BSD 3-Clause License. # #This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the BSD 3-Clause License for more details. import torch.nn as nn import torch num_parallel = 2 class LinearFuse(nn.Module): def __init__(self, ratio): super(LinearFuse, self).__init__() self.ratio = ratio def forward(self, x): # x: [B, N, C], mask: [B, N] # mask_threshold = torch.rand(1)[0] * (high - low) + low # mask = [torch.rand(x[0].shape[0], x[0].shape[1]), torch.rand(x[0].shape[0], x[0].shape[1])] x0, x1 = torch.zeros_like(x[0]), torch.zeros_like(x[1]) x0 = self.ratio*x[0] + (1-self.ratio)*x[1] x1 = (1-self.ratio)*x[0] + self.ratio*x[1] return [x0, x1] class ModuleParallel(nn.Module): def __init__(self, module): super(ModuleParallel, self).__init__() self.module = module def forward(self, x_parallel): return [self.module(x) for x in x_parallel] class LayerNormParallel(nn.Module): def __init__(self, num_features): super(LayerNormParallel, self).__init__() for i in range(num_parallel): setattr(self, 'ln_' + str(i), nn.LayerNorm(num_features, eps=1e-6)) def forward(self, x_parallel): return [getattr(self, 'ln_' + str(i))(x) for i, x in enumerate(x_parallel)]