import os import random import gradio as gr import numpy as np import torch from PIL import Image, ImageFilter from transformers import CLIPTextModel from diffusers import UniPCMultistepScheduler from model.BrushNet_CA import BrushNetModel from model.diffusers_c.models import UNet2DConditionModel from pipeline.pipeline_PowerPaint_Brushnet_CA import StableDiffusionPowerPaintBrushNetPipeline from utils.utils import TokenizerWrapper, add_tokens base_path = "./PowerPaint_v2" os.system("apt install git") os.system("apt install git-lfs") os.system(f"git lfs clone https://code.openxlab.org.cn/zhuangjunhao/PowerPaint_v2.git {base_path}") os.system(f"cd {base_path} && git lfs pull") os.system("cd ..") torch.set_grad_enabled(False) context_prompt = "" context_negative_prompt = "" base_model_path = "./PowerPaint_v2/realisticVisionV60B1_v51VAE/" dtype = torch.float16 unet = UNet2DConditionModel.from_pretrained( "runwayml/stable-diffusion-v1-5", subfolder="unet", revision=None, torch_dtype=dtype ) text_encoder_brushnet = CLIPTextModel.from_pretrained( "runwayml/stable-diffusion-v1-5", subfolder="text_encoder", revision=None, torch_dtype=dtype ) brushnet = BrushNetModel.from_unet(unet) global pipe pipe = StableDiffusionPowerPaintBrushNetPipeline.from_pretrained( base_model_path, brushnet=brushnet, text_encoder_brushnet=text_encoder_brushnet, torch_dtype=dtype, low_cpu_mem_usage=False, safety_checker=None, ) pipe.unet = UNet2DConditionModel.from_pretrained(base_model_path, subfolder="unet", revision=None, torch_dtype=dtype) pipe.tokenizer = TokenizerWrapper(from_pretrained=base_model_path, subfolder="tokenizer", revision=None) add_tokens( tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder_brushnet, placeholder_tokens=["P_ctxt", "P_shape", "P_obj"], initialize_tokens=["a", "a", "a"], num_vectors_per_token=10, ) from safetensors.torch import load_model load_model(pipe.brushnet, "./PowerPaint_v2/PowerPaint_Brushnet/diffusion_pytorch_model.safetensors") pipe.text_encoder_brushnet.load_state_dict( torch.load("./PowerPaint_v2/PowerPaint_Brushnet/pytorch_model.bin"), strict=False ) pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() global current_control current_control = "canny" # controlnet_conditioning_scale = 0.8 def set_seed(seed): torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) def add_task(control_type): # print(control_type) if control_type == "object-removal": promptA = "P_ctxt" promptB = "P_ctxt" negative_promptA = "P_obj" negative_promptB = "P_obj" elif control_type == "context-aware": promptA = "P_ctxt" promptB = "P_ctxt" negative_promptA = "" negative_promptB = "" elif control_type == "shape-guided": promptA = "P_shape" promptB = "P_ctxt" negative_promptA = "P_shape" negative_promptB = "P_ctxt" elif control_type == "image-outpainting": promptA = "P_ctxt" promptB = "P_ctxt" negative_promptA = "P_obj" negative_promptB = "P_obj" else: promptA = "P_obj" promptB = "P_obj" negative_promptA = "P_obj" negative_promptB = "P_obj" return promptA, promptB, negative_promptA, negative_promptB def predict( input_image, prompt, fitting_degree, ddim_steps, scale, seed, negative_prompt, task, vertical_expansion_ratio, horizontal_expansion_ratio, ): size1, size2 = input_image["image"].convert("RGB").size if task != "image-outpainting": if size1 < size2: input_image["image"] = input_image["image"].convert("RGB").resize((640, int(size2 / size1 * 640))) else: input_image["image"] = input_image["image"].convert("RGB").resize((int(size1 / size2 * 640), 640)) else: if size1 < size2: input_image["image"] = input_image["image"].convert("RGB").resize((512, int(size2 / size1 * 512))) else: input_image["image"] = input_image["image"].convert("RGB").resize((int(size1 / size2 * 512), 512)) if task == "image-outpainting" or task == "context-aware": prompt = prompt + " empty scene" if task == "object-removal": prompt = prompt + " empty scene blur" if vertical_expansion_ratio != None and horizontal_expansion_ratio != None: o_W, o_H = input_image["image"].convert("RGB").size c_W = int(horizontal_expansion_ratio * o_W) c_H = int(vertical_expansion_ratio * o_H) expand_img = np.ones((c_H, c_W, 3), dtype=np.uint8) * 127 original_img = np.array(input_image["image"]) expand_img[ int((c_H - o_H) / 2.0) : int((c_H - o_H) / 2.0) + o_H, int((c_W - o_W) / 2.0) : int((c_W - o_W) / 2.0) + o_W, :, ] = original_img blurry_gap = 10 expand_mask = np.ones((c_H, c_W, 3), dtype=np.uint8) * 255 if vertical_expansion_ratio == 1 and horizontal_expansion_ratio != 1: expand_mask[ int((c_H - o_H) / 2.0) : int((c_H - o_H) / 2.0) + o_H, int((c_W - o_W) / 2.0) + blurry_gap : int((c_W - o_W) / 2.0) + o_W - blurry_gap, :, ] = 0 elif vertical_expansion_ratio != 1 and horizontal_expansion_ratio != 1: expand_mask[ int((c_H - o_H) / 2.0) + blurry_gap : int((c_H - o_H) / 2.0) + o_H - blurry_gap, int((c_W - o_W) / 2.0) + blurry_gap : int((c_W - o_W) / 2.0) + o_W - blurry_gap, :, ] = 0 elif vertical_expansion_ratio != 1 and horizontal_expansion_ratio == 1: expand_mask[ int((c_H - o_H) / 2.0) + blurry_gap : int((c_H - o_H) / 2.0) + o_H - blurry_gap, int((c_W - o_W) / 2.0) : int((c_W - o_W) / 2.0) + o_W, :, ] = 0 input_image["image"] = Image.fromarray(expand_img) input_image["mask"] = Image.fromarray(expand_mask) promptA, promptB, negative_promptA, negative_promptB = add_task(task) img = np.array(input_image["image"].convert("RGB")) W = int(np.shape(img)[0] - np.shape(img)[0] % 8) H = int(np.shape(img)[1] - np.shape(img)[1] % 8) input_image["image"] = input_image["image"].resize((H, W)) input_image["mask"] = input_image["mask"].resize((H, W)) np_inpimg = np.array(input_image["image"]) np_inmask = np.array(input_image["mask"]) / 255.0 np_inpimg = np_inpimg * (1 - np_inmask) input_image["image"] = Image.fromarray(np_inpimg.astype(np.uint8)).convert("RGB") set_seed(seed) global pipe result = pipe( promptA=promptA, promptB=promptB, promptU=prompt, tradoff=fitting_degree, tradoff_nag=fitting_degree, image=input_image["image"].convert("RGB"), mask=input_image["mask"].convert("RGB"), num_inference_steps=ddim_steps, generator=torch.Generator("cuda").manual_seed(seed), brushnet_conditioning_scale=1.0, negative_promptA=negative_promptA, negative_promptB=negative_promptB, negative_promptU=negative_prompt, guidance_scale=scale, width=H, height=W, ).images[0] mask_np = np.array(input_image["mask"].convert("RGB")) red = np.array(result).astype("float") * 1 red[:, :, 0] = 180.0 red[:, :, 2] = 0 red[:, :, 1] = 0 result_m = np.array(result) result_m = Image.fromarray( ( result_m.astype("float") * (1 - mask_np.astype("float") / 512.0) + mask_np.astype("float") / 512.0 * red ).astype("uint8") ) m_img = input_image["mask"].convert("RGB").filter(ImageFilter.GaussianBlur(radius=3)) m_img = np.asarray(m_img) / 255.0 img_np = np.asarray(input_image["image"].convert("RGB")) / 255.0 ours_np = np.asarray(result) / 255.0 ours_np = ours_np * m_img + (1 - m_img) * img_np result_paste = Image.fromarray(np.uint8(ours_np * 255)) dict_res = [input_image["mask"].convert("RGB"), result_m] dict_out = [result] return dict_out, dict_res def infer( input_image, text_guided_prompt, text_guided_negative_prompt, shape_guided_prompt, shape_guided_negative_prompt, fitting_degree, ddim_steps, scale, seed, task, vertical_expansion_ratio, horizontal_expansion_ratio, outpaint_prompt, outpaint_negative_prompt, removal_prompt, removal_negative_prompt, context_prompt, context_negative_prompt, ): if task == "text-guided": prompt = text_guided_prompt negative_prompt = text_guided_negative_prompt elif task == "shape-guided": prompt = shape_guided_prompt negative_prompt = shape_guided_negative_prompt elif task == "object-removal": prompt = removal_prompt negative_prompt = removal_negative_prompt elif task == "context-aware": prompt = context_prompt negative_prompt = context_negative_prompt elif task == "image-outpainting": prompt = outpaint_prompt negative_prompt = outpaint_negative_prompt return predict( input_image, prompt, fitting_degree, ddim_steps, scale, seed, negative_prompt, task, vertical_expansion_ratio, horizontal_expansion_ratio, ) else: task = "text-guided" prompt = text_guided_prompt negative_prompt = text_guided_negative_prompt return predict(input_image, prompt, fitting_degree, ddim_steps, scale, seed, negative_prompt, task, None, None) def select_tab_text_guided(): return "text-guided" def select_tab_object_removal(): return "object-removal" def select_tab_context_aware(): return "context-aware" def select_tab_image_outpainting(): return "image-outpainting" def select_tab_shape_guided(): return "shape-guided" with gr.Blocks(css="style.css") as demo: with gr.Row(): gr.Markdown( "