# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import Tuple, Union import torch import torch.fft as fft from ..utils.torch_utils import randn_tensor class FreeInitMixin: r"""Mixin class for FreeInit.""" def enable_free_init( self, num_iters: int = 3, use_fast_sampling: bool = False, method: str = "butterworth", order: int = 4, spatial_stop_frequency: float = 0.25, temporal_stop_frequency: float = 0.25, ): """Enables the FreeInit mechanism as in https://arxiv.org/abs/2312.07537. This implementation has been adapted from the [official repository](https://github.com/TianxingWu/FreeInit). Args: num_iters (`int`, *optional*, defaults to `3`): Number of FreeInit noise re-initialization iterations. use_fast_sampling (`bool`, *optional*, defaults to `False`): Whether or not to speedup sampling procedure at the cost of probably lower quality results. Enables the "Coarse-to-Fine Sampling" strategy, as mentioned in the paper, if set to `True`. method (`str`, *optional*, defaults to `butterworth`): Must be one of `butterworth`, `ideal` or `gaussian` to use as the filtering method for the FreeInit low pass filter. order (`int`, *optional*, defaults to `4`): Order of the filter used in `butterworth` method. Larger values lead to `ideal` method behaviour whereas lower values lead to `gaussian` method behaviour. spatial_stop_frequency (`float`, *optional*, defaults to `0.25`): Normalized stop frequency for spatial dimensions. Must be between 0 to 1. Referred to as `d_s` in the original implementation. temporal_stop_frequency (`float`, *optional*, defaults to `0.25`): Normalized stop frequency for temporal dimensions. Must be between 0 to 1. Referred to as `d_t` in the original implementation. """ self._free_init_num_iters = num_iters self._free_init_use_fast_sampling = use_fast_sampling self._free_init_method = method self._free_init_order = order self._free_init_spatial_stop_frequency = spatial_stop_frequency self._free_init_temporal_stop_frequency = temporal_stop_frequency def disable_free_init(self): """Disables the FreeInit mechanism if enabled.""" self._free_init_num_iters = None @property def free_init_enabled(self): return hasattr(self, "_free_init_num_iters") and self._free_init_num_iters is not None def _get_free_init_freq_filter( self, shape: Tuple[int, ...], device: Union[str, torch.dtype], filter_type: str, order: float, spatial_stop_frequency: float, temporal_stop_frequency: float, ) -> torch.Tensor: r"""Returns the FreeInit filter based on filter type and other input conditions.""" time, height, width = shape[-3], shape[-2], shape[-1] mask = torch.zeros(shape) if spatial_stop_frequency == 0 or temporal_stop_frequency == 0: return mask if filter_type == "butterworth": def retrieve_mask(x): return 1 / (1 + (x / spatial_stop_frequency**2) ** order) elif filter_type == "gaussian": def retrieve_mask(x): return math.exp(-1 / (2 * spatial_stop_frequency**2) * x) elif filter_type == "ideal": def retrieve_mask(x): return 1 if x <= spatial_stop_frequency * 2 else 0 else: raise NotImplementedError("`filter_type` must be one of gaussian, butterworth or ideal") for t in range(time): for h in range(height): for w in range(width): d_square = ( ((spatial_stop_frequency / temporal_stop_frequency) * (2 * t / time - 1)) ** 2 + (2 * h / height - 1) ** 2 + (2 * w / width - 1) ** 2 ) mask[..., t, h, w] = retrieve_mask(d_square) return mask.to(device) def _apply_freq_filter(self, x: torch.Tensor, noise: torch.Tensor, low_pass_filter: torch.Tensor) -> torch.Tensor: r"""Noise reinitialization.""" # FFT x_freq = fft.fftn(x, dim=(-3, -2, -1)) x_freq = fft.fftshift(x_freq, dim=(-3, -2, -1)) noise_freq = fft.fftn(noise, dim=(-3, -2, -1)) noise_freq = fft.fftshift(noise_freq, dim=(-3, -2, -1)) # frequency mix high_pass_filter = 1 - low_pass_filter x_freq_low = x_freq * low_pass_filter noise_freq_high = noise_freq * high_pass_filter x_freq_mixed = x_freq_low + noise_freq_high # mix in freq domain # IFFT x_freq_mixed = fft.ifftshift(x_freq_mixed, dim=(-3, -2, -1)) x_mixed = fft.ifftn(x_freq_mixed, dim=(-3, -2, -1)).real return x_mixed def _apply_free_init( self, latents: torch.Tensor, free_init_iteration: int, num_inference_steps: int, device: torch.device, dtype: torch.dtype, generator: torch.Generator, ): if free_init_iteration == 0: self._free_init_initial_noise = latents.detach().clone() return latents, self.scheduler.timesteps latent_shape = latents.shape free_init_filter_shape = (1, *latent_shape[1:]) free_init_freq_filter = self._get_free_init_freq_filter( shape=free_init_filter_shape, device=device, filter_type=self._free_init_method, order=self._free_init_order, spatial_stop_frequency=self._free_init_spatial_stop_frequency, temporal_stop_frequency=self._free_init_temporal_stop_frequency, ) current_diffuse_timestep = self.scheduler.config.num_train_timesteps - 1 diffuse_timesteps = torch.full((latent_shape[0],), current_diffuse_timestep).long() z_t = self.scheduler.add_noise( original_samples=latents, noise=self._free_init_initial_noise, timesteps=diffuse_timesteps.to(device) ).to(dtype=torch.float32) z_rand = randn_tensor( shape=latent_shape, generator=generator, device=device, dtype=torch.float32, ) latents = self._apply_freq_filter(z_t, z_rand, low_pass_filter=free_init_freq_filter) latents = latents.to(dtype) # Coarse-to-Fine Sampling for faster inference (can lead to lower quality) if self._free_init_use_fast_sampling: num_inference_steps = int(num_inference_steps / self._free_init_num_iters * (free_init_iteration + 1)) self.scheduler.set_timesteps(num_inference_steps, device=device) return latents, self.scheduler.timesteps