# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Optional, Tuple import numpy as np import torch import torch.nn as nn from ...utils import BaseOutput, is_torch_version from ...utils.torch_utils import randn_tensor from ..activations import get_activation from ..attention_processor import SpatialNorm from ..unets.unet_2d_blocks import ( AutoencoderTinyBlock, UNetMidBlock2D, get_down_block, get_up_block, ) @dataclass class DecoderOutput(BaseOutput): r""" Output of decoding method. Args: sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): The decoded output sample from the last layer of the model. """ sample: torch.FloatTensor class Encoder(nn.Module): r""" The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation. Args: in_channels (`int`, *optional*, defaults to 3): The number of input channels. out_channels (`int`, *optional*, defaults to 3): The number of output channels. down_block_types (`Tuple[str, ...]`, *optional*, defaults to `("DownEncoderBlock2D",)`): The types of down blocks to use. See `~diffusers.models.unet_2d_blocks.get_down_block` for available options. block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): The number of output channels for each block. layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. norm_num_groups (`int`, *optional*, defaults to 32): The number of groups for normalization. act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. See `~diffusers.models.activations.get_activation` for available options. double_z (`bool`, *optional*, defaults to `True`): Whether to double the number of output channels for the last block. """ def __init__( self, in_channels: int = 3, out_channels: int = 3, down_block_types: Tuple[str, ...] = ("DownEncoderBlock2D",), block_out_channels: Tuple[int, ...] = (64,), layers_per_block: int = 2, norm_num_groups: int = 32, act_fn: str = "silu", double_z: bool = True, mid_block_add_attention=True, ): super().__init__() self.layers_per_block = layers_per_block self.conv_in = nn.Conv2d( in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1, ) self.mid_block = None self.down_blocks = nn.ModuleList([]) # down output_channel = block_out_channels[0] for i, down_block_type in enumerate(down_block_types): input_channel = output_channel output_channel = block_out_channels[i] is_final_block = i == len(block_out_channels) - 1 down_block = get_down_block( down_block_type, num_layers=self.layers_per_block, in_channels=input_channel, out_channels=output_channel, add_downsample=not is_final_block, resnet_eps=1e-6, downsample_padding=0, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, attention_head_dim=output_channel, temb_channels=None, ) self.down_blocks.append(down_block) # mid self.mid_block = UNetMidBlock2D( in_channels=block_out_channels[-1], resnet_eps=1e-6, resnet_act_fn=act_fn, output_scale_factor=1, resnet_time_scale_shift="default", attention_head_dim=block_out_channels[-1], resnet_groups=norm_num_groups, temb_channels=None, add_attention=mid_block_add_attention, ) # out self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6) self.conv_act = nn.SiLU() conv_out_channels = 2 * out_channels if double_z else out_channels self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1) self.gradient_checkpointing = False def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor: r"""The forward method of the `Encoder` class.""" sample = self.conv_in(sample) if self.training and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward # down if is_torch_version(">=", "1.11.0"): for down_block in self.down_blocks: sample = torch.utils.checkpoint.checkpoint( create_custom_forward(down_block), sample, use_reentrant=False ) # middle sample = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block), sample, use_reentrant=False ) else: for down_block in self.down_blocks: sample = torch.utils.checkpoint.checkpoint(create_custom_forward(down_block), sample) # middle sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample) else: # down for down_block in self.down_blocks: sample = down_block(sample) # middle sample = self.mid_block(sample) # post-process sample = self.conv_norm_out(sample) sample = self.conv_act(sample) sample = self.conv_out(sample) return sample class Decoder(nn.Module): r""" The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample. Args: in_channels (`int`, *optional*, defaults to 3): The number of input channels. out_channels (`int`, *optional*, defaults to 3): The number of output channels. up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`): The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options. block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): The number of output channels for each block. layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. norm_num_groups (`int`, *optional*, defaults to 32): The number of groups for normalization. act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. See `~diffusers.models.activations.get_activation` for available options. norm_type (`str`, *optional*, defaults to `"group"`): The normalization type to use. Can be either `"group"` or `"spatial"`. """ def __init__( self, in_channels: int = 3, out_channels: int = 3, up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",), block_out_channels: Tuple[int, ...] = (64,), layers_per_block: int = 2, norm_num_groups: int = 32, act_fn: str = "silu", norm_type: str = "group", # group, spatial mid_block_add_attention=True, ): super().__init__() self.layers_per_block = layers_per_block self.conv_in = nn.Conv2d( in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1, ) self.mid_block = None self.up_blocks = nn.ModuleList([]) temb_channels = in_channels if norm_type == "spatial" else None # mid self.mid_block = UNetMidBlock2D( in_channels=block_out_channels[-1], resnet_eps=1e-6, resnet_act_fn=act_fn, output_scale_factor=1, resnet_time_scale_shift="default" if norm_type == "group" else norm_type, attention_head_dim=block_out_channels[-1], resnet_groups=norm_num_groups, temb_channels=temb_channels, add_attention=mid_block_add_attention, ) # up reversed_block_out_channels = list(reversed(block_out_channels)) output_channel = reversed_block_out_channels[0] for i, up_block_type in enumerate(up_block_types): prev_output_channel = output_channel output_channel = reversed_block_out_channels[i] is_final_block = i == len(block_out_channels) - 1 up_block = get_up_block( up_block_type, num_layers=self.layers_per_block + 1, in_channels=prev_output_channel, out_channels=output_channel, prev_output_channel=None, add_upsample=not is_final_block, resnet_eps=1e-6, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, attention_head_dim=output_channel, temb_channels=temb_channels, resnet_time_scale_shift=norm_type, ) self.up_blocks.append(up_block) prev_output_channel = output_channel # out if norm_type == "spatial": self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels) else: self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6) self.conv_act = nn.SiLU() self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1) self.gradient_checkpointing = False def forward( self, sample: torch.FloatTensor, latent_embeds: Optional[torch.FloatTensor] = None, ) -> torch.FloatTensor: r"""The forward method of the `Decoder` class.""" sample = self.conv_in(sample) upscale_dtype = next(iter(self.up_blocks.parameters())).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward if is_torch_version(">=", "1.11.0"): # middle sample = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block), sample, latent_embeds, use_reentrant=False, ) sample = sample.to(upscale_dtype) # up for up_block in self.up_blocks: sample = torch.utils.checkpoint.checkpoint( create_custom_forward(up_block), sample, latent_embeds, use_reentrant=False, ) else: # middle sample = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block), sample, latent_embeds ) sample = sample.to(upscale_dtype) # up for up_block in self.up_blocks: sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds) else: # middle sample = self.mid_block(sample, latent_embeds) sample = sample.to(upscale_dtype) # up for up_block in self.up_blocks: sample = up_block(sample, latent_embeds) # post-process if latent_embeds is None: sample = self.conv_norm_out(sample) else: sample = self.conv_norm_out(sample, latent_embeds) sample = self.conv_act(sample) sample = self.conv_out(sample) return sample class UpSample(nn.Module): r""" The `UpSample` layer of a variational autoencoder that upsamples its input. Args: in_channels (`int`, *optional*, defaults to 3): The number of input channels. out_channels (`int`, *optional*, defaults to 3): The number of output channels. """ def __init__( self, in_channels: int, out_channels: int, ) -> None: super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.deconv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=4, stride=2, padding=1) def forward(self, x: torch.FloatTensor) -> torch.FloatTensor: r"""The forward method of the `UpSample` class.""" x = torch.relu(x) x = self.deconv(x) return x class MaskConditionEncoder(nn.Module): """ used in AsymmetricAutoencoderKL """ def __init__( self, in_ch: int, out_ch: int = 192, res_ch: int = 768, stride: int = 16, ) -> None: super().__init__() channels = [] while stride > 1: stride = stride // 2 in_ch_ = out_ch * 2 if out_ch > res_ch: out_ch = res_ch if stride == 1: in_ch_ = res_ch channels.append((in_ch_, out_ch)) out_ch *= 2 out_channels = [] for _in_ch, _out_ch in channels: out_channels.append(_out_ch) out_channels.append(channels[-1][0]) layers = [] in_ch_ = in_ch for l in range(len(out_channels)): out_ch_ = out_channels[l] if l == 0 or l == 1: layers.append(nn.Conv2d(in_ch_, out_ch_, kernel_size=3, stride=1, padding=1)) else: layers.append(nn.Conv2d(in_ch_, out_ch_, kernel_size=4, stride=2, padding=1)) in_ch_ = out_ch_ self.layers = nn.Sequential(*layers) def forward(self, x: torch.FloatTensor, mask=None) -> torch.FloatTensor: r"""The forward method of the `MaskConditionEncoder` class.""" out = {} for l in range(len(self.layers)): layer = self.layers[l] x = layer(x) out[str(tuple(x.shape))] = x x = torch.relu(x) return out class MaskConditionDecoder(nn.Module): r"""The `MaskConditionDecoder` should be used in combination with [`AsymmetricAutoencoderKL`] to enhance the model's decoder with a conditioner on the mask and masked image. Args: in_channels (`int`, *optional*, defaults to 3): The number of input channels. out_channels (`int`, *optional*, defaults to 3): The number of output channels. up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`): The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options. block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): The number of output channels for each block. layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. norm_num_groups (`int`, *optional*, defaults to 32): The number of groups for normalization. act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. See `~diffusers.models.activations.get_activation` for available options. norm_type (`str`, *optional*, defaults to `"group"`): The normalization type to use. Can be either `"group"` or `"spatial"`. """ def __init__( self, in_channels: int = 3, out_channels: int = 3, up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",), block_out_channels: Tuple[int, ...] = (64,), layers_per_block: int = 2, norm_num_groups: int = 32, act_fn: str = "silu", norm_type: str = "group", # group, spatial ): super().__init__() self.layers_per_block = layers_per_block self.conv_in = nn.Conv2d( in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1, ) self.mid_block = None self.up_blocks = nn.ModuleList([]) temb_channels = in_channels if norm_type == "spatial" else None # mid self.mid_block = UNetMidBlock2D( in_channels=block_out_channels[-1], resnet_eps=1e-6, resnet_act_fn=act_fn, output_scale_factor=1, resnet_time_scale_shift="default" if norm_type == "group" else norm_type, attention_head_dim=block_out_channels[-1], resnet_groups=norm_num_groups, temb_channels=temb_channels, ) # up reversed_block_out_channels = list(reversed(block_out_channels)) output_channel = reversed_block_out_channels[0] for i, up_block_type in enumerate(up_block_types): prev_output_channel = output_channel output_channel = reversed_block_out_channels[i] is_final_block = i == len(block_out_channels) - 1 up_block = get_up_block( up_block_type, num_layers=self.layers_per_block + 1, in_channels=prev_output_channel, out_channels=output_channel, prev_output_channel=None, add_upsample=not is_final_block, resnet_eps=1e-6, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, attention_head_dim=output_channel, temb_channels=temb_channels, resnet_time_scale_shift=norm_type, ) self.up_blocks.append(up_block) prev_output_channel = output_channel # condition encoder self.condition_encoder = MaskConditionEncoder( in_ch=out_channels, out_ch=block_out_channels[0], res_ch=block_out_channels[-1], ) # out if norm_type == "spatial": self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels) else: self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6) self.conv_act = nn.SiLU() self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1) self.gradient_checkpointing = False def forward( self, z: torch.FloatTensor, image: Optional[torch.FloatTensor] = None, mask: Optional[torch.FloatTensor] = None, latent_embeds: Optional[torch.FloatTensor] = None, ) -> torch.FloatTensor: r"""The forward method of the `MaskConditionDecoder` class.""" sample = z sample = self.conv_in(sample) upscale_dtype = next(iter(self.up_blocks.parameters())).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward if is_torch_version(">=", "1.11.0"): # middle sample = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block), sample, latent_embeds, use_reentrant=False, ) sample = sample.to(upscale_dtype) # condition encoder if image is not None and mask is not None: masked_image = (1 - mask) * image im_x = torch.utils.checkpoint.checkpoint( create_custom_forward(self.condition_encoder), masked_image, mask, use_reentrant=False, ) # up for up_block in self.up_blocks: if image is not None and mask is not None: sample_ = im_x[str(tuple(sample.shape))] mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest") sample = sample * mask_ + sample_ * (1 - mask_) sample = torch.utils.checkpoint.checkpoint( create_custom_forward(up_block), sample, latent_embeds, use_reentrant=False, ) if image is not None and mask is not None: sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask) else: # middle sample = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block), sample, latent_embeds ) sample = sample.to(upscale_dtype) # condition encoder if image is not None and mask is not None: masked_image = (1 - mask) * image im_x = torch.utils.checkpoint.checkpoint( create_custom_forward(self.condition_encoder), masked_image, mask, ) # up for up_block in self.up_blocks: if image is not None and mask is not None: sample_ = im_x[str(tuple(sample.shape))] mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest") sample = sample * mask_ + sample_ * (1 - mask_) sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds) if image is not None and mask is not None: sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask) else: # middle sample = self.mid_block(sample, latent_embeds) sample = sample.to(upscale_dtype) # condition encoder if image is not None and mask is not None: masked_image = (1 - mask) * image im_x = self.condition_encoder(masked_image, mask) # up for up_block in self.up_blocks: if image is not None and mask is not None: sample_ = im_x[str(tuple(sample.shape))] mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest") sample = sample * mask_ + sample_ * (1 - mask_) sample = up_block(sample, latent_embeds) if image is not None and mask is not None: sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask) # post-process if latent_embeds is None: sample = self.conv_norm_out(sample) else: sample = self.conv_norm_out(sample, latent_embeds) sample = self.conv_act(sample) sample = self.conv_out(sample) return sample class VectorQuantizer(nn.Module): """ Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly avoids costly matrix multiplications and allows for post-hoc remapping of indices. """ # NOTE: due to a bug the beta term was applied to the wrong term. for # backwards compatibility we use the buggy version by default, but you can # specify legacy=False to fix it. def __init__( self, n_e: int, vq_embed_dim: int, beta: float, remap=None, unknown_index: str = "random", sane_index_shape: bool = False, legacy: bool = True, ): super().__init__() self.n_e = n_e self.vq_embed_dim = vq_embed_dim self.beta = beta self.legacy = legacy self.embedding = nn.Embedding(self.n_e, self.vq_embed_dim) self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) self.remap = remap if self.remap is not None: self.register_buffer("used", torch.tensor(np.load(self.remap))) self.used: torch.Tensor self.re_embed = self.used.shape[0] self.unknown_index = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": self.unknown_index = self.re_embed self.re_embed = self.re_embed + 1 print( f"Remapping {self.n_e} indices to {self.re_embed} indices. " f"Using {self.unknown_index} for unknown indices." ) else: self.re_embed = n_e self.sane_index_shape = sane_index_shape def remap_to_used(self, inds: torch.LongTensor) -> torch.LongTensor: ishape = inds.shape assert len(ishape) > 1 inds = inds.reshape(ishape[0], -1) used = self.used.to(inds) match = (inds[:, :, None] == used[None, None, ...]).long() new = match.argmax(-1) unknown = match.sum(2) < 1 if self.unknown_index == "random": new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device) else: new[unknown] = self.unknown_index return new.reshape(ishape) def unmap_to_all(self, inds: torch.LongTensor) -> torch.LongTensor: ishape = inds.shape assert len(ishape) > 1 inds = inds.reshape(ishape[0], -1) used = self.used.to(inds) if self.re_embed > self.used.shape[0]: # extra token inds[inds >= self.used.shape[0]] = 0 # simply set to zero back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds) return back.reshape(ishape) def forward(self, z: torch.FloatTensor) -> Tuple[torch.FloatTensor, torch.FloatTensor, Tuple]: # reshape z -> (batch, height, width, channel) and flatten z = z.permute(0, 2, 3, 1).contiguous() z_flattened = z.view(-1, self.vq_embed_dim) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z min_encoding_indices = torch.argmin(torch.cdist(z_flattened, self.embedding.weight), dim=1) z_q = self.embedding(min_encoding_indices).view(z.shape) perplexity = None min_encodings = None # compute loss for embedding if not self.legacy: loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2) else: loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2) # preserve gradients z_q: torch.FloatTensor = z + (z_q - z).detach() # reshape back to match original input shape z_q = z_q.permute(0, 3, 1, 2).contiguous() if self.remap is not None: min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) # add batch axis min_encoding_indices = self.remap_to_used(min_encoding_indices) min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten if self.sane_index_shape: min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3]) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def get_codebook_entry(self, indices: torch.LongTensor, shape: Tuple[int, ...]) -> torch.FloatTensor: # shape specifying (batch, height, width, channel) if self.remap is not None: indices = indices.reshape(shape[0], -1) # add batch axis indices = self.unmap_to_all(indices) indices = indices.reshape(-1) # flatten again # get quantized latent vectors z_q: torch.FloatTensor = self.embedding(indices) if shape is not None: z_q = z_q.view(shape) # reshape back to match original input shape z_q = z_q.permute(0, 3, 1, 2).contiguous() return z_q class DiagonalGaussianDistribution(object): def __init__(self, parameters: torch.Tensor, deterministic: bool = False): self.parameters = parameters self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) self.logvar = torch.clamp(self.logvar, -30.0, 20.0) self.deterministic = deterministic self.std = torch.exp(0.5 * self.logvar) self.var = torch.exp(self.logvar) if self.deterministic: self.var = self.std = torch.zeros_like( self.mean, device=self.parameters.device, dtype=self.parameters.dtype ) def sample(self, generator: Optional[torch.Generator] = None) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype sample = randn_tensor( self.mean.shape, generator=generator, device=self.parameters.device, dtype=self.parameters.dtype, ) x = self.mean + self.std * sample return x def kl(self, other: "DiagonalGaussianDistribution" = None) -> torch.Tensor: if self.deterministic: return torch.Tensor([0.0]) else: if other is None: return 0.5 * torch.sum( torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, dim=[1, 2, 3], ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean, 2) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar, dim=[1, 2, 3], ) def nll(self, sample: torch.Tensor, dims: Tuple[int, ...] = [1, 2, 3]) -> torch.Tensor: if self.deterministic: return torch.Tensor([0.0]) logtwopi = np.log(2.0 * np.pi) return 0.5 * torch.sum( logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, dim=dims, ) def mode(self) -> torch.Tensor: return self.mean class EncoderTiny(nn.Module): r""" The `EncoderTiny` layer is a simpler version of the `Encoder` layer. Args: in_channels (`int`): The number of input channels. out_channels (`int`): The number of output channels. num_blocks (`Tuple[int, ...]`): Each value of the tuple represents a Conv2d layer followed by `value` number of `AutoencoderTinyBlock`'s to use. block_out_channels (`Tuple[int, ...]`): The number of output channels for each block. act_fn (`str`): The activation function to use. See `~diffusers.models.activations.get_activation` for available options. """ def __init__( self, in_channels: int, out_channels: int, num_blocks: Tuple[int, ...], block_out_channels: Tuple[int, ...], act_fn: str, ): super().__init__() layers = [] for i, num_block in enumerate(num_blocks): num_channels = block_out_channels[i] if i == 0: layers.append(nn.Conv2d(in_channels, num_channels, kernel_size=3, padding=1)) else: layers.append( nn.Conv2d( num_channels, num_channels, kernel_size=3, padding=1, stride=2, bias=False, ) ) for _ in range(num_block): layers.append(AutoencoderTinyBlock(num_channels, num_channels, act_fn)) layers.append(nn.Conv2d(block_out_channels[-1], out_channels, kernel_size=3, padding=1)) self.layers = nn.Sequential(*layers) self.gradient_checkpointing = False def forward(self, x: torch.FloatTensor) -> torch.FloatTensor: r"""The forward method of the `EncoderTiny` class.""" if self.training and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward if is_torch_version(">=", "1.11.0"): x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x, use_reentrant=False) else: x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x) else: # scale image from [-1, 1] to [0, 1] to match TAESD convention x = self.layers(x.add(1).div(2)) return x class DecoderTiny(nn.Module): r""" The `DecoderTiny` layer is a simpler version of the `Decoder` layer. Args: in_channels (`int`): The number of input channels. out_channels (`int`): The number of output channels. num_blocks (`Tuple[int, ...]`): Each value of the tuple represents a Conv2d layer followed by `value` number of `AutoencoderTinyBlock`'s to use. block_out_channels (`Tuple[int, ...]`): The number of output channels for each block. upsampling_scaling_factor (`int`): The scaling factor to use for upsampling. act_fn (`str`): The activation function to use. See `~diffusers.models.activations.get_activation` for available options. """ def __init__( self, in_channels: int, out_channels: int, num_blocks: Tuple[int, ...], block_out_channels: Tuple[int, ...], upsampling_scaling_factor: int, act_fn: str, ): super().__init__() layers = [ nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=1), get_activation(act_fn), ] for i, num_block in enumerate(num_blocks): is_final_block = i == (len(num_blocks) - 1) num_channels = block_out_channels[i] for _ in range(num_block): layers.append(AutoencoderTinyBlock(num_channels, num_channels, act_fn)) if not is_final_block: layers.append(nn.Upsample(scale_factor=upsampling_scaling_factor)) conv_out_channel = num_channels if not is_final_block else out_channels layers.append( nn.Conv2d( num_channels, conv_out_channel, kernel_size=3, padding=1, bias=is_final_block, ) ) self.layers = nn.Sequential(*layers) self.gradient_checkpointing = False def forward(self, x: torch.FloatTensor) -> torch.FloatTensor: r"""The forward method of the `DecoderTiny` class.""" # Clamp. x = torch.tanh(x / 3) * 3 if self.training and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward if is_torch_version(">=", "1.11.0"): x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x, use_reentrant=False) else: x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x) else: x = self.layers(x) # scale image from [0, 1] to [-1, 1] to match diffusers convention return x.mul(2).sub(1)