# Copyright 2024 Katherine Crowson and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from scipy import integrate from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) @flax.struct.dataclass class LMSDiscreteSchedulerState: common: CommonSchedulerState # setable values init_noise_sigma: jnp.ndarray timesteps: jnp.ndarray sigmas: jnp.ndarray num_inference_steps: Optional[int] = None # running values derivatives: Optional[jnp.ndarray] = None @classmethod def create( cls, common: CommonSchedulerState, init_noise_sigma: jnp.ndarray, timesteps: jnp.ndarray, sigmas: jnp.ndarray ): return cls(common=common, init_noise_sigma=init_noise_sigma, timesteps=timesteps, sigmas=sigmas) @dataclass class FlaxLMSSchedulerOutput(FlaxSchedulerOutput): state: LMSDiscreteSchedulerState class FlaxLMSDiscreteScheduler(FlaxSchedulerMixin, ConfigMixin): """ Linear Multistep Scheduler for discrete beta schedules. Based on the original k-diffusion implementation by Katherine Crowson: https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L181 [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and [`~SchedulerMixin.from_pretrained`] functions. Args: num_train_timesteps (`int`): number of diffusion steps used to train the model. beta_start (`float`): the starting `beta` value of inference. beta_end (`float`): the final `beta` value. beta_schedule (`str`): the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear` or `scaled_linear`. trained_betas (`jnp.ndarray`, optional): option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. prediction_type (`str`, default `epsilon`, optional): prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 https://imagen.research.google/video/paper.pdf) dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`): the `dtype` used for params and computation. """ _compatibles = [e.name for e in FlaxKarrasDiffusionSchedulers] dtype: jnp.dtype @property def has_state(self): return True @register_to_config def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.0001, beta_end: float = 0.02, beta_schedule: str = "linear", trained_betas: Optional[jnp.ndarray] = None, prediction_type: str = "epsilon", dtype: jnp.dtype = jnp.float32, ): self.dtype = dtype def create_state(self, common: Optional[CommonSchedulerState] = None) -> LMSDiscreteSchedulerState: if common is None: common = CommonSchedulerState.create(self) timesteps = jnp.arange(0, self.config.num_train_timesteps).round()[::-1] sigmas = ((1 - common.alphas_cumprod) / common.alphas_cumprod) ** 0.5 # standard deviation of the initial noise distribution init_noise_sigma = sigmas.max() return LMSDiscreteSchedulerState.create( common=common, init_noise_sigma=init_noise_sigma, timesteps=timesteps, sigmas=sigmas, ) def scale_model_input(self, state: LMSDiscreteSchedulerState, sample: jnp.ndarray, timestep: int) -> jnp.ndarray: """ Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the K-LMS algorithm. Args: state (`LMSDiscreteSchedulerState`): the `FlaxLMSDiscreteScheduler` state data class instance. sample (`jnp.ndarray`): current instance of sample being created by diffusion process. timestep (`int`): current discrete timestep in the diffusion chain. Returns: `jnp.ndarray`: scaled input sample """ (step_index,) = jnp.where(state.timesteps == timestep, size=1) step_index = step_index[0] sigma = state.sigmas[step_index] sample = sample / ((sigma**2 + 1) ** 0.5) return sample def get_lms_coefficient(self, state: LMSDiscreteSchedulerState, order, t, current_order): """ Compute a linear multistep coefficient. Args: order (TODO): t (TODO): current_order (TODO): """ def lms_derivative(tau): prod = 1.0 for k in range(order): if current_order == k: continue prod *= (tau - state.sigmas[t - k]) / (state.sigmas[t - current_order] - state.sigmas[t - k]) return prod integrated_coeff = integrate.quad(lms_derivative, state.sigmas[t], state.sigmas[t + 1], epsrel=1e-4)[0] return integrated_coeff def set_timesteps( self, state: LMSDiscreteSchedulerState, num_inference_steps: int, shape: Tuple = () ) -> LMSDiscreteSchedulerState: """ Sets the timesteps used for the diffusion chain. Supporting function to be run before inference. Args: state (`LMSDiscreteSchedulerState`): the `FlaxLMSDiscreteScheduler` state data class instance. num_inference_steps (`int`): the number of diffusion steps used when generating samples with a pre-trained model. """ timesteps = jnp.linspace(self.config.num_train_timesteps - 1, 0, num_inference_steps, dtype=self.dtype) low_idx = jnp.floor(timesteps).astype(jnp.int32) high_idx = jnp.ceil(timesteps).astype(jnp.int32) frac = jnp.mod(timesteps, 1.0) sigmas = ((1 - state.common.alphas_cumprod) / state.common.alphas_cumprod) ** 0.5 sigmas = (1 - frac) * sigmas[low_idx] + frac * sigmas[high_idx] sigmas = jnp.concatenate([sigmas, jnp.array([0.0], dtype=self.dtype)]) timesteps = timesteps.astype(jnp.int32) # initial running values derivatives = jnp.zeros((0,) + shape, dtype=self.dtype) return state.replace( timesteps=timesteps, sigmas=sigmas, num_inference_steps=num_inference_steps, derivatives=derivatives, ) def step( self, state: LMSDiscreteSchedulerState, model_output: jnp.ndarray, timestep: int, sample: jnp.ndarray, order: int = 4, return_dict: bool = True, ) -> Union[FlaxLMSSchedulerOutput, Tuple]: """ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion process from the learned model outputs (most often the predicted noise). Args: state (`LMSDiscreteSchedulerState`): the `FlaxLMSDiscreteScheduler` state data class instance. model_output (`jnp.ndarray`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`jnp.ndarray`): current instance of sample being created by diffusion process. order: coefficient for multi-step inference. return_dict (`bool`): option for returning tuple rather than FlaxLMSSchedulerOutput class Returns: [`FlaxLMSSchedulerOutput`] or `tuple`: [`FlaxLMSSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ if state.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) sigma = state.sigmas[timestep] # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": pred_original_sample = sample - sigma * model_output elif self.config.prediction_type == "v_prediction": # * c_out + input * c_skip pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1)) else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) # 2. Convert to an ODE derivative derivative = (sample - pred_original_sample) / sigma state = state.replace(derivatives=jnp.append(state.derivatives, derivative)) if len(state.derivatives) > order: state = state.replace(derivatives=jnp.delete(state.derivatives, 0)) # 3. Compute linear multistep coefficients order = min(timestep + 1, order) lms_coeffs = [self.get_lms_coefficient(state, order, timestep, curr_order) for curr_order in range(order)] # 4. Compute previous sample based on the derivatives path prev_sample = sample + sum( coeff * derivative for coeff, derivative in zip(lms_coeffs, reversed(state.derivatives)) ) if not return_dict: return (prev_sample, state) return FlaxLMSSchedulerOutput(prev_sample=prev_sample, state=state) def add_noise( self, state: LMSDiscreteSchedulerState, original_samples: jnp.ndarray, noise: jnp.ndarray, timesteps: jnp.ndarray, ) -> jnp.ndarray: sigma = state.sigmas[timesteps].flatten() sigma = broadcast_to_shape_from_left(sigma, noise.shape) noisy_samples = original_samples + noise * sigma return noisy_samples def __len__(self): return self.config.num_train_timesteps