# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # IMPORTANT: # ################################################################### # ----------------------------------------------------------------# # This file is deprecated and will be removed soon # # (as soon as PEFT will become a required dependency for LoRA) # # ----------------------------------------------------------------# ################################################################### from typing import Optional, Tuple, Union import torch import torch.nn.functional as F from torch import nn from ..utils import deprecate, logging from ..utils.import_utils import is_transformers_available if is_transformers_available(): from transformers import CLIPTextModel, CLIPTextModelWithProjection logger = logging.get_logger(__name__) # pylint: disable=invalid-name def text_encoder_attn_modules(text_encoder): attn_modules = [] if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)): for i, layer in enumerate(text_encoder.text_model.encoder.layers): name = f"text_model.encoder.layers.{i}.self_attn" mod = layer.self_attn attn_modules.append((name, mod)) else: raise ValueError(f"do not know how to get attention modules for: {text_encoder.__class__.__name__}") return attn_modules def text_encoder_mlp_modules(text_encoder): mlp_modules = [] if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)): for i, layer in enumerate(text_encoder.text_model.encoder.layers): mlp_mod = layer.mlp name = f"text_model.encoder.layers.{i}.mlp" mlp_modules.append((name, mlp_mod)) else: raise ValueError(f"do not know how to get mlp modules for: {text_encoder.__class__.__name__}") return mlp_modules def adjust_lora_scale_text_encoder(text_encoder, lora_scale: float = 1.0): for _, attn_module in text_encoder_attn_modules(text_encoder): if isinstance(attn_module.q_proj, PatchedLoraProjection): attn_module.q_proj.lora_scale = lora_scale attn_module.k_proj.lora_scale = lora_scale attn_module.v_proj.lora_scale = lora_scale attn_module.out_proj.lora_scale = lora_scale for _, mlp_module in text_encoder_mlp_modules(text_encoder): if isinstance(mlp_module.fc1, PatchedLoraProjection): mlp_module.fc1.lora_scale = lora_scale mlp_module.fc2.lora_scale = lora_scale class PatchedLoraProjection(torch.nn.Module): def __init__(self, regular_linear_layer, lora_scale=1, network_alpha=None, rank=4, dtype=None): deprecation_message = "Use of `PatchedLoraProjection` is deprecated. Please switch to PEFT backend by installing PEFT: `pip install peft`." deprecate("PatchedLoraProjection", "1.0.0", deprecation_message) super().__init__() from ..models.lora import LoRALinearLayer self.regular_linear_layer = regular_linear_layer device = self.regular_linear_layer.weight.device if dtype is None: dtype = self.regular_linear_layer.weight.dtype self.lora_linear_layer = LoRALinearLayer( self.regular_linear_layer.in_features, self.regular_linear_layer.out_features, network_alpha=network_alpha, device=device, dtype=dtype, rank=rank, ) self.lora_scale = lora_scale # overwrite PyTorch's `state_dict` to be sure that only the 'regular_linear_layer' weights are saved # when saving the whole text encoder model and when LoRA is unloaded or fused def state_dict(self, *args, destination=None, prefix="", keep_vars=False): if self.lora_linear_layer is None: return self.regular_linear_layer.state_dict( *args, destination=destination, prefix=prefix, keep_vars=keep_vars ) return super().state_dict(*args, destination=destination, prefix=prefix, keep_vars=keep_vars) def _fuse_lora(self, lora_scale=1.0, safe_fusing=False): if self.lora_linear_layer is None: return dtype, device = self.regular_linear_layer.weight.data.dtype, self.regular_linear_layer.weight.data.device w_orig = self.regular_linear_layer.weight.data.float() w_up = self.lora_linear_layer.up.weight.data.float() w_down = self.lora_linear_layer.down.weight.data.float() if self.lora_linear_layer.network_alpha is not None: w_up = w_up * self.lora_linear_layer.network_alpha / self.lora_linear_layer.rank fused_weight = w_orig + (lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0]) if safe_fusing and torch.isnan(fused_weight).any().item(): raise ValueError( "This LoRA weight seems to be broken. " f"Encountered NaN values when trying to fuse LoRA weights for {self}." "LoRA weights will not be fused." ) self.regular_linear_layer.weight.data = fused_weight.to(device=device, dtype=dtype) # we can drop the lora layer now self.lora_linear_layer = None # offload the up and down matrices to CPU to not blow the memory self.w_up = w_up.cpu() self.w_down = w_down.cpu() self.lora_scale = lora_scale def _unfuse_lora(self): if not (getattr(self, "w_up", None) is not None and getattr(self, "w_down", None) is not None): return fused_weight = self.regular_linear_layer.weight.data dtype, device = fused_weight.dtype, fused_weight.device w_up = self.w_up.to(device=device).float() w_down = self.w_down.to(device).float() unfused_weight = fused_weight.float() - (self.lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0]) self.regular_linear_layer.weight.data = unfused_weight.to(device=device, dtype=dtype) self.w_up = None self.w_down = None def forward(self, input): if self.lora_scale is None: self.lora_scale = 1.0 if self.lora_linear_layer is None: return self.regular_linear_layer(input) return self.regular_linear_layer(input) + (self.lora_scale * self.lora_linear_layer(input)) class LoRALinearLayer(nn.Module): r""" A linear layer that is used with LoRA. Parameters: in_features (`int`): Number of input features. out_features (`int`): Number of output features. rank (`int`, `optional`, defaults to 4): The rank of the LoRA layer. network_alpha (`float`, `optional`, defaults to `None`): The value of the network alpha used for stable learning and preventing underflow. This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script. See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning device (`torch.device`, `optional`, defaults to `None`): The device to use for the layer's weights. dtype (`torch.dtype`, `optional`, defaults to `None`): The dtype to use for the layer's weights. """ def __init__( self, in_features: int, out_features: int, rank: int = 4, network_alpha: Optional[float] = None, device: Optional[Union[torch.device, str]] = None, dtype: Optional[torch.dtype] = None, ): super().__init__() self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype) self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype) # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script. # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning self.network_alpha = network_alpha self.rank = rank self.out_features = out_features self.in_features = in_features nn.init.normal_(self.down.weight, std=1 / rank) nn.init.zeros_(self.up.weight) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: orig_dtype = hidden_states.dtype dtype = self.down.weight.dtype down_hidden_states = self.down(hidden_states.to(dtype)) up_hidden_states = self.up(down_hidden_states) if self.network_alpha is not None: up_hidden_states *= self.network_alpha / self.rank return up_hidden_states.to(orig_dtype) class LoRAConv2dLayer(nn.Module): r""" A convolutional layer that is used with LoRA. Parameters: in_features (`int`): Number of input features. out_features (`int`): Number of output features. rank (`int`, `optional`, defaults to 4): The rank of the LoRA layer. kernel_size (`int` or `tuple` of two `int`, `optional`, defaults to 1): The kernel size of the convolution. stride (`int` or `tuple` of two `int`, `optional`, defaults to 1): The stride of the convolution. padding (`int` or `tuple` of two `int` or `str`, `optional`, defaults to 0): The padding of the convolution. network_alpha (`float`, `optional`, defaults to `None`): The value of the network alpha used for stable learning and preventing underflow. This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script. See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning """ def __init__( self, in_features: int, out_features: int, rank: int = 4, kernel_size: Union[int, Tuple[int, int]] = (1, 1), stride: Union[int, Tuple[int, int]] = (1, 1), padding: Union[int, Tuple[int, int], str] = 0, network_alpha: Optional[float] = None, ): super().__init__() self.down = nn.Conv2d(in_features, rank, kernel_size=kernel_size, stride=stride, padding=padding, bias=False) # according to the official kohya_ss trainer kernel_size are always fixed for the up layer # # see: https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L129 self.up = nn.Conv2d(rank, out_features, kernel_size=(1, 1), stride=(1, 1), bias=False) # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script. # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning self.network_alpha = network_alpha self.rank = rank nn.init.normal_(self.down.weight, std=1 / rank) nn.init.zeros_(self.up.weight) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: orig_dtype = hidden_states.dtype dtype = self.down.weight.dtype down_hidden_states = self.down(hidden_states.to(dtype)) up_hidden_states = self.up(down_hidden_states) if self.network_alpha is not None: up_hidden_states *= self.network_alpha / self.rank return up_hidden_states.to(orig_dtype) class LoRACompatibleConv(nn.Conv2d): """ A convolutional layer that can be used with LoRA. """ def __init__(self, *args, lora_layer: Optional[LoRAConv2dLayer] = None, **kwargs): deprecation_message = "Use of `LoRACompatibleConv` is deprecated. Please switch to PEFT backend by installing PEFT: `pip install peft`." deprecate("LoRACompatibleConv", "1.0.0", deprecation_message) super().__init__(*args, **kwargs) self.lora_layer = lora_layer def set_lora_layer(self, lora_layer: Optional[LoRAConv2dLayer]): deprecation_message = "Use of `set_lora_layer()` is deprecated. Please switch to PEFT backend by installing PEFT: `pip install peft`." deprecate("set_lora_layer", "1.0.0", deprecation_message) self.lora_layer = lora_layer def _fuse_lora(self, lora_scale: float = 1.0, safe_fusing: bool = False): if self.lora_layer is None: return dtype, device = self.weight.data.dtype, self.weight.data.device w_orig = self.weight.data.float() w_up = self.lora_layer.up.weight.data.float() w_down = self.lora_layer.down.weight.data.float() if self.lora_layer.network_alpha is not None: w_up = w_up * self.lora_layer.network_alpha / self.lora_layer.rank fusion = torch.mm(w_up.flatten(start_dim=1), w_down.flatten(start_dim=1)) fusion = fusion.reshape((w_orig.shape)) fused_weight = w_orig + (lora_scale * fusion) if safe_fusing and torch.isnan(fused_weight).any().item(): raise ValueError( "This LoRA weight seems to be broken. " f"Encountered NaN values when trying to fuse LoRA weights for {self}." "LoRA weights will not be fused." ) self.weight.data = fused_weight.to(device=device, dtype=dtype) # we can drop the lora layer now self.lora_layer = None # offload the up and down matrices to CPU to not blow the memory self.w_up = w_up.cpu() self.w_down = w_down.cpu() self._lora_scale = lora_scale def _unfuse_lora(self): if not (getattr(self, "w_up", None) is not None and getattr(self, "w_down", None) is not None): return fused_weight = self.weight.data dtype, device = fused_weight.data.dtype, fused_weight.data.device self.w_up = self.w_up.to(device=device).float() self.w_down = self.w_down.to(device).float() fusion = torch.mm(self.w_up.flatten(start_dim=1), self.w_down.flatten(start_dim=1)) fusion = fusion.reshape((fused_weight.shape)) unfused_weight = fused_weight.float() - (self._lora_scale * fusion) self.weight.data = unfused_weight.to(device=device, dtype=dtype) self.w_up = None self.w_down = None def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor: if self.padding_mode != "zeros": hidden_states = F.pad(hidden_states, self._reversed_padding_repeated_twice, mode=self.padding_mode) padding = (0, 0) else: padding = self.padding original_outputs = F.conv2d( hidden_states, self.weight, self.bias, self.stride, padding, self.dilation, self.groups ) if self.lora_layer is None: return original_outputs else: return original_outputs + (scale * self.lora_layer(hidden_states)) class LoRACompatibleLinear(nn.Linear): """ A Linear layer that can be used with LoRA. """ def __init__(self, *args, lora_layer: Optional[LoRALinearLayer] = None, **kwargs): deprecation_message = "Use of `LoRACompatibleLinear` is deprecated. Please switch to PEFT backend by installing PEFT: `pip install peft`." deprecate("LoRACompatibleLinear", "1.0.0", deprecation_message) super().__init__(*args, **kwargs) self.lora_layer = lora_layer def set_lora_layer(self, lora_layer: Optional[LoRALinearLayer]): deprecation_message = "Use of `set_lora_layer()` is deprecated. Please switch to PEFT backend by installing PEFT: `pip install peft`." deprecate("set_lora_layer", "1.0.0", deprecation_message) self.lora_layer = lora_layer def _fuse_lora(self, lora_scale: float = 1.0, safe_fusing: bool = False): if self.lora_layer is None: return dtype, device = self.weight.data.dtype, self.weight.data.device w_orig = self.weight.data.float() w_up = self.lora_layer.up.weight.data.float() w_down = self.lora_layer.down.weight.data.float() if self.lora_layer.network_alpha is not None: w_up = w_up * self.lora_layer.network_alpha / self.lora_layer.rank fused_weight = w_orig + (lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0]) if safe_fusing and torch.isnan(fused_weight).any().item(): raise ValueError( "This LoRA weight seems to be broken. " f"Encountered NaN values when trying to fuse LoRA weights for {self}." "LoRA weights will not be fused." ) self.weight.data = fused_weight.to(device=device, dtype=dtype) # we can drop the lora layer now self.lora_layer = None # offload the up and down matrices to CPU to not blow the memory self.w_up = w_up.cpu() self.w_down = w_down.cpu() self._lora_scale = lora_scale def _unfuse_lora(self): if not (getattr(self, "w_up", None) is not None and getattr(self, "w_down", None) is not None): return fused_weight = self.weight.data dtype, device = fused_weight.dtype, fused_weight.device w_up = self.w_up.to(device=device).float() w_down = self.w_down.to(device).float() unfused_weight = fused_weight.float() - (self._lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0]) self.weight.data = unfused_weight.to(device=device, dtype=dtype) self.w_up = None self.w_down = None def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor: if self.lora_layer is None: out = super().forward(hidden_states) return out else: out = super().forward(hidden_states) + (scale * self.lora_layer(hidden_states)) return out