ZhengPeng7 commited on
Commit
81b1a0e
·
1 Parent(s): cbc329e

Initialization on my BiRefNet online demo.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.jpg filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ flagged/
2
+
3
+ __pycache__
4
+
5
+ .DS_Store
app.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from glob import glob
3
+ import cv2
4
+ import numpy as np
5
+ from PIL import Image
6
+ import torch
7
+ from torchvision import transforms
8
+ import gradio as gr
9
+
10
+ from models.baseline import BiRefNet
11
+ from config import Config
12
+
13
+
14
+ config = Config()
15
+ device = config.device
16
+
17
+
18
+ class ImagePreprocessor():
19
+ def __init__(self) -> None:
20
+ self.transform_image = transforms.Compose([
21
+ transforms.Resize((1024, 1024)),
22
+ transforms.ToTensor(),
23
+ transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
24
+ ])
25
+
26
+ def proc(self, image):
27
+ image = self.transform_image(image)
28
+ return image
29
+
30
+
31
+ model = BiRefNet().to(device)
32
+ state_dict = './birefnet_dis.pth'
33
+ if os.path.exists(state_dict):
34
+ birefnet_dict = torch.load(state_dict, map_location=device)
35
+ unwanted_prefix = '_orig_mod.'
36
+ for k, v in list(birefnet_dict.items()):
37
+ if k.startswith(unwanted_prefix):
38
+ birefnet_dict[k[len(unwanted_prefix):]] = birefnet_dict.pop(k)
39
+ model.load_state_dict(birefnet_dict)
40
+ model.eval()
41
+
42
+
43
+ # def predict(image_1, image_2):
44
+ # images = [image_1, image_2]
45
+ def predict(image):
46
+ images = [image]
47
+ image_shapes = [image.shape[:2] for image in images]
48
+ images = [Image.fromarray(image) for image in images]
49
+
50
+ images_proc = []
51
+ image_preprocessor = ImagePreprocessor()
52
+ for image in images:
53
+ images_proc.append(image_preprocessor.proc(image))
54
+ images_proc = torch.cat([image_proc.unsqueeze(0) for image_proc in images_proc])
55
+
56
+ with torch.no_grad():
57
+ scaled_preds_tensor = model(images_proc.to(device))[-1].sigmoid() # BiRefNet needs an sigmoid activation outside the forward.
58
+ preds = []
59
+ for image_shape, pred_tensor in zip(image_shapes, scaled_preds_tensor):
60
+ if device == 'cuda':
61
+ pred_tensor = pred_tensor.cpu()
62
+ preds.append(torch.nn.functional.interpolate(pred_tensor.unsqueeze(0), size=image_shape, mode='bilinear', align_corners=True).squeeze().numpy())
63
+ image_preds = []
64
+ for image, pred in zip(images, preds):
65
+ image_preds.append(
66
+ cv2.cvtColor((pred*255).astype(np.uint8), cv2.COLOR_GRAY2RGB)
67
+ )
68
+ return image_preds[:] if len(images) > 1 else image_preds[0]
69
+
70
+
71
+ examples = [[_] for _ in glob('examples/*')][:]
72
+
73
+ N = 1
74
+ ipt = [gr.Image() for _ in range(N)]
75
+ opt = [gr.Image() for _ in range(N)]
76
+ demo = gr.Interface(
77
+ fn=predict,
78
+ inputs=ipt,
79
+ outputs=opt,
80
+ examples=examples,
81
+ title='Online demo for `Bilateral Reference for High-Resolution Dichotomous Image Segmentation`',
82
+ description=('Upload a picture, our model will give you the binary maps of the highly accurate segmentation of the salient objects in it. :)'
83
+ '\n')
84
+ )
85
+ demo.launch(debug=True)
backbones/build_backbone.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from collections import OrderedDict
4
+ from torchvision.models import vgg16, vgg16_bn, VGG16_Weights, VGG16_BN_Weights, resnet50, ResNet50_Weights
5
+ from models.backbones.pvt_v2 import pvt_v2_b2, pvt_v2_b5
6
+ from models.backbones.swin_v1 import swin_v1_t, swin_v1_s, swin_v1_b, swin_v1_l
7
+ from config import Config
8
+
9
+
10
+ config = Config()
11
+
12
+ def build_backbone(bb_name, pretrained=True, params_settings=''):
13
+ if bb_name == 'vgg16':
14
+ bb_net = list(vgg16(pretrained=VGG16_Weights.DEFAULT if pretrained else None).children())[0]
15
+ bb = nn.Sequential(OrderedDict({'conv1': bb_net[:4], 'conv2': bb_net[4:9], 'conv3': bb_net[9:16], 'conv4': bb_net[16:23]}))
16
+ elif bb_name == 'vgg16bn':
17
+ bb_net = list(vgg16_bn(pretrained=VGG16_BN_Weights.DEFAULT if pretrained else None).children())[0]
18
+ bb = nn.Sequential(OrderedDict({'conv1': bb_net[:6], 'conv2': bb_net[6:13], 'conv3': bb_net[13:23], 'conv4': bb_net[23:33]}))
19
+ elif bb_name == 'resnet50':
20
+ bb_net = list(resnet50(pretrained=ResNet50_Weights.DEFAULT if pretrained else None).children())
21
+ bb = nn.Sequential(OrderedDict({'conv1': nn.Sequential(*bb_net[0:3]), 'conv2': bb_net[4], 'conv3': bb_net[5], 'conv4': bb_net[6]}))
22
+ else:
23
+ bb = eval('{}({})'.format(bb_name, params_settings))
24
+ if pretrained:
25
+ bb = load_weights(bb, bb_name)
26
+ return bb
27
+
28
+ def load_weights(model, model_name):
29
+ save_model = torch.load(config.weights[model_name])
30
+ model_dict = model.state_dict()
31
+ state_dict = {k: v if v.size() == model_dict[k].size() else model_dict[k] for k, v in save_model.items() if k in model_dict.keys()}
32
+ # to ignore the weights with mismatched size when I modify the backbone itself.
33
+ if not state_dict:
34
+ save_model_keys = list(save_model.keys())
35
+ sub_item = save_model_keys[0] if len(save_model_keys) == 1 else None
36
+ state_dict = {k: v if v.size() == model_dict[k].size() else model_dict[k] for k, v in save_model[sub_item].items() if k in model_dict.keys()}
37
+ if not state_dict or not sub_item:
38
+ print('Weights are not successully loaded. Check the state dict of weights file.')
39
+ return None
40
+ else:
41
+ print('Found correct weights in the "{}" item of loaded state_dict.'.format(sub_item))
42
+ model_dict.update(state_dict)
43
+ model.load_state_dict(model_dict)
44
+ return model
backbones/pvt_v2.py ADDED
@@ -0,0 +1,435 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from functools import partial
4
+
5
+ from timm.models.layers import DropPath, to_2tuple, trunc_normal_
6
+ from timm.models.registry import register_model
7
+
8
+ import math
9
+
10
+ from config import Config
11
+
12
+ config = Config()
13
+
14
+ class Mlp(nn.Module):
15
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
16
+ super().__init__()
17
+ out_features = out_features or in_features
18
+ hidden_features = hidden_features or in_features
19
+ self.fc1 = nn.Linear(in_features, hidden_features)
20
+ self.dwconv = DWConv(hidden_features)
21
+ self.act = act_layer()
22
+ self.fc2 = nn.Linear(hidden_features, out_features)
23
+ self.drop = nn.Dropout(drop)
24
+
25
+ self.apply(self._init_weights)
26
+
27
+ def _init_weights(self, m):
28
+ if isinstance(m, nn.Linear):
29
+ trunc_normal_(m.weight, std=.02)
30
+ if isinstance(m, nn.Linear) and m.bias is not None:
31
+ nn.init.constant_(m.bias, 0)
32
+ elif isinstance(m, nn.LayerNorm):
33
+ nn.init.constant_(m.bias, 0)
34
+ nn.init.constant_(m.weight, 1.0)
35
+ elif isinstance(m, nn.Conv2d):
36
+ fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
37
+ fan_out //= m.groups
38
+ m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
39
+ if m.bias is not None:
40
+ m.bias.data.zero_()
41
+
42
+ def forward(self, x, H, W):
43
+ x = self.fc1(x)
44
+ x = self.dwconv(x, H, W)
45
+ x = self.act(x)
46
+ x = self.drop(x)
47
+ x = self.fc2(x)
48
+ x = self.drop(x)
49
+ return x
50
+
51
+
52
+ class Attention(nn.Module):
53
+ def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
54
+ super().__init__()
55
+ assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
56
+
57
+ self.dim = dim
58
+ self.num_heads = num_heads
59
+ head_dim = dim // num_heads
60
+ self.scale = qk_scale or head_dim ** -0.5
61
+
62
+ self.q = nn.Linear(dim, dim, bias=qkv_bias)
63
+ self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
64
+ self.attn_drop_prob = attn_drop
65
+ self.attn_drop = nn.Dropout(attn_drop)
66
+ self.proj = nn.Linear(dim, dim)
67
+ self.proj_drop = nn.Dropout(proj_drop)
68
+
69
+ self.sr_ratio = sr_ratio
70
+ if sr_ratio > 1:
71
+ self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
72
+ self.norm = nn.LayerNorm(dim)
73
+
74
+ self.apply(self._init_weights)
75
+
76
+ def _init_weights(self, m):
77
+ if isinstance(m, nn.Linear):
78
+ trunc_normal_(m.weight, std=.02)
79
+ if isinstance(m, nn.Linear) and m.bias is not None:
80
+ nn.init.constant_(m.bias, 0)
81
+ elif isinstance(m, nn.LayerNorm):
82
+ nn.init.constant_(m.bias, 0)
83
+ nn.init.constant_(m.weight, 1.0)
84
+ elif isinstance(m, nn.Conv2d):
85
+ fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
86
+ fan_out //= m.groups
87
+ m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
88
+ if m.bias is not None:
89
+ m.bias.data.zero_()
90
+
91
+ def forward(self, x, H, W):
92
+ B, N, C = x.shape
93
+ q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
94
+
95
+ if self.sr_ratio > 1:
96
+ x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
97
+ x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
98
+ x_ = self.norm(x_)
99
+ kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
100
+ else:
101
+ kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
102
+ k, v = kv[0], kv[1]
103
+
104
+ if config.SDPA_enabled:
105
+ x = torch.nn.functional.scaled_dot_product_attention(
106
+ q, k, v,
107
+ attn_mask=None, dropout_p=self.attn_drop_prob, is_causal=False
108
+ ).transpose(1, 2).reshape(B, N, C)
109
+ else:
110
+ attn = (q @ k.transpose(-2, -1)) * self.scale
111
+ attn = attn.softmax(dim=-1)
112
+ attn = self.attn_drop(attn)
113
+
114
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
115
+ x = self.proj(x)
116
+ x = self.proj_drop(x)
117
+
118
+ return x
119
+
120
+
121
+ class Block(nn.Module):
122
+
123
+ def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
124
+ drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1):
125
+ super().__init__()
126
+ self.norm1 = norm_layer(dim)
127
+ self.attn = Attention(
128
+ dim,
129
+ num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
130
+ attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
131
+ # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
132
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
133
+ self.norm2 = norm_layer(dim)
134
+ mlp_hidden_dim = int(dim * mlp_ratio)
135
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
136
+
137
+ self.apply(self._init_weights)
138
+
139
+ def _init_weights(self, m):
140
+ if isinstance(m, nn.Linear):
141
+ trunc_normal_(m.weight, std=.02)
142
+ if isinstance(m, nn.Linear) and m.bias is not None:
143
+ nn.init.constant_(m.bias, 0)
144
+ elif isinstance(m, nn.LayerNorm):
145
+ nn.init.constant_(m.bias, 0)
146
+ nn.init.constant_(m.weight, 1.0)
147
+ elif isinstance(m, nn.Conv2d):
148
+ fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
149
+ fan_out //= m.groups
150
+ m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
151
+ if m.bias is not None:
152
+ m.bias.data.zero_()
153
+
154
+ def forward(self, x, H, W):
155
+ x = x + self.drop_path(self.attn(self.norm1(x), H, W))
156
+ x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
157
+
158
+ return x
159
+
160
+
161
+ class OverlapPatchEmbed(nn.Module):
162
+ """ Image to Patch Embedding
163
+ """
164
+
165
+ def __init__(self, img_size=224, patch_size=7, stride=4, in_channels=3, embed_dim=768):
166
+ super().__init__()
167
+ img_size = to_2tuple(img_size)
168
+ patch_size = to_2tuple(patch_size)
169
+
170
+ self.img_size = img_size
171
+ self.patch_size = patch_size
172
+ self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
173
+ self.num_patches = self.H * self.W
174
+ self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=stride,
175
+ padding=(patch_size[0] // 2, patch_size[1] // 2))
176
+ self.norm = nn.LayerNorm(embed_dim)
177
+
178
+ self.apply(self._init_weights)
179
+
180
+ def _init_weights(self, m):
181
+ if isinstance(m, nn.Linear):
182
+ trunc_normal_(m.weight, std=.02)
183
+ if isinstance(m, nn.Linear) and m.bias is not None:
184
+ nn.init.constant_(m.bias, 0)
185
+ elif isinstance(m, nn.LayerNorm):
186
+ nn.init.constant_(m.bias, 0)
187
+ nn.init.constant_(m.weight, 1.0)
188
+ elif isinstance(m, nn.Conv2d):
189
+ fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
190
+ fan_out //= m.groups
191
+ m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
192
+ if m.bias is not None:
193
+ m.bias.data.zero_()
194
+
195
+ def forward(self, x):
196
+ x = self.proj(x)
197
+ _, _, H, W = x.shape
198
+ x = x.flatten(2).transpose(1, 2)
199
+ x = self.norm(x)
200
+
201
+ return x, H, W
202
+
203
+
204
+ class PyramidVisionTransformerImpr(nn.Module):
205
+ def __init__(self, img_size=224, patch_size=16, in_channels=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
206
+ num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
207
+ attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
208
+ depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1]):
209
+ super().__init__()
210
+ self.num_classes = num_classes
211
+ self.depths = depths
212
+
213
+ # patch_embed
214
+ self.patch_embed1 = OverlapPatchEmbed(img_size=img_size, patch_size=7, stride=4, in_channels=in_channels,
215
+ embed_dim=embed_dims[0])
216
+ self.patch_embed2 = OverlapPatchEmbed(img_size=img_size // 4, patch_size=3, stride=2, in_channels=embed_dims[0],
217
+ embed_dim=embed_dims[1])
218
+ self.patch_embed3 = OverlapPatchEmbed(img_size=img_size // 8, patch_size=3, stride=2, in_channels=embed_dims[1],
219
+ embed_dim=embed_dims[2])
220
+ self.patch_embed4 = OverlapPatchEmbed(img_size=img_size // 16, patch_size=3, stride=2, in_channels=embed_dims[2],
221
+ embed_dim=embed_dims[3])
222
+
223
+ # transformer encoder
224
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
225
+ cur = 0
226
+ self.block1 = nn.ModuleList([Block(
227
+ dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
228
+ drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
229
+ sr_ratio=sr_ratios[0])
230
+ for i in range(depths[0])])
231
+ self.norm1 = norm_layer(embed_dims[0])
232
+
233
+ cur += depths[0]
234
+ self.block2 = nn.ModuleList([Block(
235
+ dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
236
+ drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
237
+ sr_ratio=sr_ratios[1])
238
+ for i in range(depths[1])])
239
+ self.norm2 = norm_layer(embed_dims[1])
240
+
241
+ cur += depths[1]
242
+ self.block3 = nn.ModuleList([Block(
243
+ dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale,
244
+ drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
245
+ sr_ratio=sr_ratios[2])
246
+ for i in range(depths[2])])
247
+ self.norm3 = norm_layer(embed_dims[2])
248
+
249
+ cur += depths[2]
250
+ self.block4 = nn.ModuleList([Block(
251
+ dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
252
+ drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
253
+ sr_ratio=sr_ratios[3])
254
+ for i in range(depths[3])])
255
+ self.norm4 = norm_layer(embed_dims[3])
256
+
257
+ # classification head
258
+ # self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()
259
+
260
+ self.apply(self._init_weights)
261
+
262
+ def _init_weights(self, m):
263
+ if isinstance(m, nn.Linear):
264
+ trunc_normal_(m.weight, std=.02)
265
+ if isinstance(m, nn.Linear) and m.bias is not None:
266
+ nn.init.constant_(m.bias, 0)
267
+ elif isinstance(m, nn.LayerNorm):
268
+ nn.init.constant_(m.bias, 0)
269
+ nn.init.constant_(m.weight, 1.0)
270
+ elif isinstance(m, nn.Conv2d):
271
+ fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
272
+ fan_out //= m.groups
273
+ m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
274
+ if m.bias is not None:
275
+ m.bias.data.zero_()
276
+
277
+ def init_weights(self, pretrained=None):
278
+ if isinstance(pretrained, str):
279
+ logger = 1
280
+ #load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger)
281
+
282
+ def reset_drop_path(self, drop_path_rate):
283
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
284
+ cur = 0
285
+ for i in range(self.depths[0]):
286
+ self.block1[i].drop_path.drop_prob = dpr[cur + i]
287
+
288
+ cur += self.depths[0]
289
+ for i in range(self.depths[1]):
290
+ self.block2[i].drop_path.drop_prob = dpr[cur + i]
291
+
292
+ cur += self.depths[1]
293
+ for i in range(self.depths[2]):
294
+ self.block3[i].drop_path.drop_prob = dpr[cur + i]
295
+
296
+ cur += self.depths[2]
297
+ for i in range(self.depths[3]):
298
+ self.block4[i].drop_path.drop_prob = dpr[cur + i]
299
+
300
+ def freeze_patch_emb(self):
301
+ self.patch_embed1.requires_grad = False
302
+
303
+ @torch.jit.ignore
304
+ def no_weight_decay(self):
305
+ return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'} # has pos_embed may be better
306
+
307
+ def get_classifier(self):
308
+ return self.head
309
+
310
+ def reset_classifier(self, num_classes, global_pool=''):
311
+ self.num_classes = num_classes
312
+ self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
313
+
314
+ def forward_features(self, x):
315
+ B = x.shape[0]
316
+ outs = []
317
+
318
+ # stage 1
319
+ x, H, W = self.patch_embed1(x)
320
+ for i, blk in enumerate(self.block1):
321
+ x = blk(x, H, W)
322
+ x = self.norm1(x)
323
+ x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
324
+ outs.append(x)
325
+
326
+ # stage 2
327
+ x, H, W = self.patch_embed2(x)
328
+ for i, blk in enumerate(self.block2):
329
+ x = blk(x, H, W)
330
+ x = self.norm2(x)
331
+ x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
332
+ outs.append(x)
333
+
334
+ # stage 3
335
+ x, H, W = self.patch_embed3(x)
336
+ for i, blk in enumerate(self.block3):
337
+ x = blk(x, H, W)
338
+ x = self.norm3(x)
339
+ x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
340
+ outs.append(x)
341
+
342
+ # stage 4
343
+ x, H, W = self.patch_embed4(x)
344
+ for i, blk in enumerate(self.block4):
345
+ x = blk(x, H, W)
346
+ x = self.norm4(x)
347
+ x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
348
+ outs.append(x)
349
+
350
+ return outs
351
+
352
+ # return x.mean(dim=1)
353
+
354
+ def forward(self, x):
355
+ x = self.forward_features(x)
356
+ # x = self.head(x)
357
+
358
+ return x
359
+
360
+
361
+ class DWConv(nn.Module):
362
+ def __init__(self, dim=768):
363
+ super(DWConv, self).__init__()
364
+ self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
365
+
366
+ def forward(self, x, H, W):
367
+ B, N, C = x.shape
368
+ x = x.transpose(1, 2).view(B, C, H, W).contiguous()
369
+ x = self.dwconv(x)
370
+ x = x.flatten(2).transpose(1, 2)
371
+
372
+ return x
373
+
374
+
375
+ def _conv_filter(state_dict, patch_size=16):
376
+ """ convert patch embedding weight from manual patchify + linear proj to conv"""
377
+ out_dict = {}
378
+ for k, v in state_dict.items():
379
+ if 'patch_embed.proj.weight' in k:
380
+ v = v.reshape((v.shape[0], 3, patch_size, patch_size))
381
+ out_dict[k] = v
382
+
383
+ return out_dict
384
+
385
+
386
+ ## @register_model
387
+ class pvt_v2_b0(PyramidVisionTransformerImpr):
388
+ def __init__(self, **kwargs):
389
+ super(pvt_v2_b0, self).__init__(
390
+ patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
391
+ qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
392
+ drop_rate=0.0, drop_path_rate=0.1)
393
+
394
+
395
+
396
+ ## @register_model
397
+ class pvt_v2_b1(PyramidVisionTransformerImpr):
398
+ def __init__(self, **kwargs):
399
+ super(pvt_v2_b1, self).__init__(
400
+ patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
401
+ qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
402
+ drop_rate=0.0, drop_path_rate=0.1)
403
+
404
+ ## @register_model
405
+ class pvt_v2_b2(PyramidVisionTransformerImpr):
406
+ def __init__(self, in_channels=3, **kwargs):
407
+ super(pvt_v2_b2, self).__init__(
408
+ patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
409
+ qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1],
410
+ drop_rate=0.0, drop_path_rate=0.1, in_channels=in_channels)
411
+
412
+ ## @register_model
413
+ class pvt_v2_b3(PyramidVisionTransformerImpr):
414
+ def __init__(self, **kwargs):
415
+ super(pvt_v2_b3, self).__init__(
416
+ patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
417
+ qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
418
+ drop_rate=0.0, drop_path_rate=0.1)
419
+
420
+ ## @register_model
421
+ class pvt_v2_b4(PyramidVisionTransformerImpr):
422
+ def __init__(self, **kwargs):
423
+ super(pvt_v2_b4, self).__init__(
424
+ patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
425
+ qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1],
426
+ drop_rate=0.0, drop_path_rate=0.1)
427
+
428
+
429
+ ## @register_model
430
+ class pvt_v2_b5(PyramidVisionTransformerImpr):
431
+ def __init__(self, **kwargs):
432
+ super(pvt_v2_b5, self).__init__(
433
+ patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
434
+ qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1],
435
+ drop_rate=0.0, drop_path_rate=0.1)
backbones/swin_v1.py ADDED
@@ -0,0 +1,652 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # Swin Transformer
3
+ # Copyright (c) 2021 Microsoft
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # Written by Ze Liu, Yutong Lin, Yixuan Wei
6
+ # --------------------------------------------------------
7
+
8
+ import torch
9
+ import torch.nn as nn
10
+ import torch.nn.functional as F
11
+ import torch.utils.checkpoint as checkpoint
12
+ import numpy as np
13
+ from timm.models.layers import DropPath, to_2tuple, trunc_normal_
14
+
15
+ from config import Config
16
+
17
+
18
+ config = Config()
19
+
20
+ class Mlp(nn.Module):
21
+ """ Multilayer perceptron."""
22
+
23
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
24
+ super().__init__()
25
+ out_features = out_features or in_features
26
+ hidden_features = hidden_features or in_features
27
+ self.fc1 = nn.Linear(in_features, hidden_features)
28
+ self.act = act_layer()
29
+ self.fc2 = nn.Linear(hidden_features, out_features)
30
+ self.drop = nn.Dropout(drop)
31
+
32
+ def forward(self, x):
33
+ x = self.fc1(x)
34
+ x = self.act(x)
35
+ x = self.drop(x)
36
+ x = self.fc2(x)
37
+ x = self.drop(x)
38
+ return x
39
+
40
+
41
+ def window_partition(x, window_size):
42
+ """
43
+ Args:
44
+ x: (B, H, W, C)
45
+ window_size (int): window size
46
+
47
+ Returns:
48
+ windows: (num_windows*B, window_size, window_size, C)
49
+ """
50
+ B, H, W, C = x.shape
51
+ x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
52
+ windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
53
+ return windows
54
+
55
+
56
+ def window_reverse(windows, window_size, H, W):
57
+ """
58
+ Args:
59
+ windows: (num_windows*B, window_size, window_size, C)
60
+ window_size (int): Window size
61
+ H (int): Height of image
62
+ W (int): Width of image
63
+
64
+ Returns:
65
+ x: (B, H, W, C)
66
+ """
67
+ B = int(windows.shape[0] / (H * W / window_size / window_size))
68
+ x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
69
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
70
+ return x
71
+
72
+
73
+ class WindowAttention(nn.Module):
74
+ """ Window based multi-head self attention (W-MSA) module with relative position bias.
75
+ It supports both of shifted and non-shifted window.
76
+
77
+ Args:
78
+ dim (int): Number of input channels.
79
+ window_size (tuple[int]): The height and width of the window.
80
+ num_heads (int): Number of attention heads.
81
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
82
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
83
+ attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
84
+ proj_drop (float, optional): Dropout ratio of output. Default: 0.0
85
+ """
86
+
87
+ def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
88
+
89
+ super().__init__()
90
+ self.dim = dim
91
+ self.window_size = window_size # Wh, Ww
92
+ self.num_heads = num_heads
93
+ head_dim = dim // num_heads
94
+ self.scale = qk_scale or head_dim ** -0.5
95
+
96
+ # define a parameter table of relative position bias
97
+ self.relative_position_bias_table = nn.Parameter(
98
+ torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
99
+
100
+ # get pair-wise relative position index for each token inside the window
101
+ coords_h = torch.arange(self.window_size[0])
102
+ coords_w = torch.arange(self.window_size[1])
103
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w], indexing='ij')) # 2, Wh, Ww
104
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
105
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
106
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
107
+ relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
108
+ relative_coords[:, :, 1] += self.window_size[1] - 1
109
+ relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
110
+ relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
111
+ self.register_buffer("relative_position_index", relative_position_index)
112
+
113
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
114
+ self.attn_drop_prob = attn_drop
115
+ self.attn_drop = nn.Dropout(attn_drop)
116
+ self.proj = nn.Linear(dim, dim)
117
+ self.proj_drop = nn.Dropout(proj_drop)
118
+
119
+ trunc_normal_(self.relative_position_bias_table, std=.02)
120
+ self.softmax = nn.Softmax(dim=-1)
121
+
122
+ def forward(self, x, mask=None):
123
+ """ Forward function.
124
+
125
+ Args:
126
+ x: input features with shape of (num_windows*B, N, C)
127
+ mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
128
+ """
129
+ B_, N, C = x.shape
130
+ qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
131
+ q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
132
+
133
+ q = q * self.scale
134
+
135
+ if config.SDPA_enabled:
136
+ x = torch.nn.functional.scaled_dot_product_attention(
137
+ q, k, v,
138
+ attn_mask=None, dropout_p=self.attn_drop_prob, is_causal=False
139
+ ).transpose(1, 2).reshape(B_, N, C)
140
+ else:
141
+ attn = (q @ k.transpose(-2, -1))
142
+
143
+ relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
144
+ self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
145
+ relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
146
+ attn = attn + relative_position_bias.unsqueeze(0)
147
+
148
+ if mask is not None:
149
+ nW = mask.shape[0]
150
+ attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
151
+ attn = attn.view(-1, self.num_heads, N, N)
152
+ attn = self.softmax(attn)
153
+ else:
154
+ attn = self.softmax(attn)
155
+
156
+ attn = self.attn_drop(attn)
157
+
158
+ x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
159
+ x = self.proj(x)
160
+ x = self.proj_drop(x)
161
+ return x
162
+
163
+
164
+ class SwinTransformerBlock(nn.Module):
165
+ """ Swin Transformer Block.
166
+
167
+ Args:
168
+ dim (int): Number of input channels.
169
+ num_heads (int): Number of attention heads.
170
+ window_size (int): Window size.
171
+ shift_size (int): Shift size for SW-MSA.
172
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
173
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
174
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
175
+ drop (float, optional): Dropout rate. Default: 0.0
176
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
177
+ drop_path (float, optional): Stochastic depth rate. Default: 0.0
178
+ act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
179
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
180
+ """
181
+
182
+ def __init__(self, dim, num_heads, window_size=7, shift_size=0,
183
+ mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
184
+ act_layer=nn.GELU, norm_layer=nn.LayerNorm):
185
+ super().__init__()
186
+ self.dim = dim
187
+ self.num_heads = num_heads
188
+ self.window_size = window_size
189
+ self.shift_size = shift_size
190
+ self.mlp_ratio = mlp_ratio
191
+ assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
192
+
193
+ self.norm1 = norm_layer(dim)
194
+ self.attn = WindowAttention(
195
+ dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
196
+ qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
197
+
198
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
199
+ self.norm2 = norm_layer(dim)
200
+ mlp_hidden_dim = int(dim * mlp_ratio)
201
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
202
+
203
+ self.H = None
204
+ self.W = None
205
+
206
+ def forward(self, x, mask_matrix):
207
+ """ Forward function.
208
+
209
+ Args:
210
+ x: Input feature, tensor size (B, H*W, C).
211
+ H, W: Spatial resolution of the input feature.
212
+ mask_matrix: Attention mask for cyclic shift.
213
+ """
214
+ B, L, C = x.shape
215
+ H, W = self.H, self.W
216
+ assert L == H * W, "input feature has wrong size"
217
+
218
+ shortcut = x
219
+ x = self.norm1(x)
220
+ x = x.view(B, H, W, C)
221
+
222
+ # pad feature maps to multiples of window size
223
+ pad_l = pad_t = 0
224
+ pad_r = (self.window_size - W % self.window_size) % self.window_size
225
+ pad_b = (self.window_size - H % self.window_size) % self.window_size
226
+ x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
227
+ _, Hp, Wp, _ = x.shape
228
+
229
+ # cyclic shift
230
+ if self.shift_size > 0:
231
+ shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
232
+ attn_mask = mask_matrix
233
+ else:
234
+ shifted_x = x
235
+ attn_mask = None
236
+
237
+ # partition windows
238
+ x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
239
+ x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
240
+
241
+ # W-MSA/SW-MSA
242
+ attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
243
+
244
+ # merge windows
245
+ attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
246
+ shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
247
+
248
+ # reverse cyclic shift
249
+ if self.shift_size > 0:
250
+ x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
251
+ else:
252
+ x = shifted_x
253
+
254
+ if pad_r > 0 or pad_b > 0:
255
+ x = x[:, :H, :W, :].contiguous()
256
+
257
+ x = x.view(B, H * W, C)
258
+
259
+ # FFN
260
+ x = shortcut + self.drop_path(x)
261
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
262
+
263
+ return x
264
+
265
+
266
+ class PatchMerging(nn.Module):
267
+ """ Patch Merging Layer
268
+
269
+ Args:
270
+ dim (int): Number of input channels.
271
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
272
+ """
273
+ def __init__(self, dim, norm_layer=nn.LayerNorm):
274
+ super().__init__()
275
+ self.dim = dim
276
+ self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
277
+ self.norm = norm_layer(4 * dim)
278
+
279
+ def forward(self, x, H, W):
280
+ """ Forward function.
281
+
282
+ Args:
283
+ x: Input feature, tensor size (B, H*W, C).
284
+ H, W: Spatial resolution of the input feature.
285
+ """
286
+ B, L, C = x.shape
287
+ assert L == H * W, "input feature has wrong size"
288
+
289
+ x = x.view(B, H, W, C)
290
+
291
+ # padding
292
+ pad_input = (H % 2 == 1) or (W % 2 == 1)
293
+ if pad_input:
294
+ x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
295
+
296
+ x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
297
+ x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
298
+ x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
299
+ x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
300
+ x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
301
+ x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
302
+
303
+ x = self.norm(x)
304
+ x = self.reduction(x)
305
+
306
+ return x
307
+
308
+
309
+ class BasicLayer(nn.Module):
310
+ """ A basic Swin Transformer layer for one stage.
311
+
312
+ Args:
313
+ dim (int): Number of feature channels
314
+ depth (int): Depths of this stage.
315
+ num_heads (int): Number of attention head.
316
+ window_size (int): Local window size. Default: 7.
317
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
318
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
319
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
320
+ drop (float, optional): Dropout rate. Default: 0.0
321
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
322
+ drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
323
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
324
+ downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
325
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
326
+ """
327
+
328
+ def __init__(self,
329
+ dim,
330
+ depth,
331
+ num_heads,
332
+ window_size=7,
333
+ mlp_ratio=4.,
334
+ qkv_bias=True,
335
+ qk_scale=None,
336
+ drop=0.,
337
+ attn_drop=0.,
338
+ drop_path=0.,
339
+ norm_layer=nn.LayerNorm,
340
+ downsample=None,
341
+ use_checkpoint=False):
342
+ super().__init__()
343
+ self.window_size = window_size
344
+ self.shift_size = window_size // 2
345
+ self.depth = depth
346
+ self.use_checkpoint = use_checkpoint
347
+
348
+ # build blocks
349
+ self.blocks = nn.ModuleList([
350
+ SwinTransformerBlock(
351
+ dim=dim,
352
+ num_heads=num_heads,
353
+ window_size=window_size,
354
+ shift_size=0 if (i % 2 == 0) else window_size // 2,
355
+ mlp_ratio=mlp_ratio,
356
+ qkv_bias=qkv_bias,
357
+ qk_scale=qk_scale,
358
+ drop=drop,
359
+ attn_drop=attn_drop,
360
+ drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
361
+ norm_layer=norm_layer)
362
+ for i in range(depth)])
363
+
364
+ # patch merging layer
365
+ if downsample is not None:
366
+ self.downsample = downsample(dim=dim, norm_layer=norm_layer)
367
+ else:
368
+ self.downsample = None
369
+
370
+ def forward(self, x, H, W):
371
+ """ Forward function.
372
+
373
+ Args:
374
+ x: Input feature, tensor size (B, H*W, C).
375
+ H, W: Spatial resolution of the input feature.
376
+ """
377
+
378
+ # calculate attention mask for SW-MSA
379
+ Hp = int(np.ceil(H / self.window_size)) * self.window_size
380
+ Wp = int(np.ceil(W / self.window_size)) * self.window_size
381
+ img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
382
+ h_slices = (slice(0, -self.window_size),
383
+ slice(-self.window_size, -self.shift_size),
384
+ slice(-self.shift_size, None))
385
+ w_slices = (slice(0, -self.window_size),
386
+ slice(-self.window_size, -self.shift_size),
387
+ slice(-self.shift_size, None))
388
+ cnt = 0
389
+ for h in h_slices:
390
+ for w in w_slices:
391
+ img_mask[:, h, w, :] = cnt
392
+ cnt += 1
393
+
394
+ mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
395
+ mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
396
+ attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
397
+ attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
398
+
399
+ for blk in self.blocks:
400
+ blk.H, blk.W = H, W
401
+ if self.use_checkpoint:
402
+ x = checkpoint.checkpoint(blk, x, attn_mask)
403
+ else:
404
+ x = blk(x, attn_mask)
405
+ if self.downsample is not None:
406
+ x_down = self.downsample(x, H, W)
407
+ Wh, Ww = (H + 1) // 2, (W + 1) // 2
408
+ return x, H, W, x_down, Wh, Ww
409
+ else:
410
+ return x, H, W, x, H, W
411
+
412
+
413
+ class PatchEmbed(nn.Module):
414
+ """ Image to Patch Embedding
415
+
416
+ Args:
417
+ patch_size (int): Patch token size. Default: 4.
418
+ in_channels (int): Number of input image channels. Default: 3.
419
+ embed_dim (int): Number of linear projection output channels. Default: 96.
420
+ norm_layer (nn.Module, optional): Normalization layer. Default: None
421
+ """
422
+
423
+ def __init__(self, patch_size=4, in_channels=3, embed_dim=96, norm_layer=None):
424
+ super().__init__()
425
+ patch_size = to_2tuple(patch_size)
426
+ self.patch_size = patch_size
427
+
428
+ self.in_channels = in_channels
429
+ self.embed_dim = embed_dim
430
+
431
+ self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
432
+ if norm_layer is not None:
433
+ self.norm = norm_layer(embed_dim)
434
+ else:
435
+ self.norm = None
436
+
437
+ def forward(self, x):
438
+ """Forward function."""
439
+ # padding
440
+ _, _, H, W = x.size()
441
+ if W % self.patch_size[1] != 0:
442
+ x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
443
+ if H % self.patch_size[0] != 0:
444
+ x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
445
+
446
+ x = self.proj(x) # B C Wh Ww
447
+ if self.norm is not None:
448
+ Wh, Ww = x.size(2), x.size(3)
449
+ x = x.flatten(2).transpose(1, 2)
450
+ x = self.norm(x)
451
+ x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
452
+
453
+ return x
454
+
455
+
456
+ class SwinTransformer(nn.Module):
457
+ """ Swin Transformer backbone.
458
+ A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
459
+ https://arxiv.org/pdf/2103.14030
460
+
461
+ Args:
462
+ pretrain_img_size (int): Input image size for training the pretrained model,
463
+ used in absolute postion embedding. Default 224.
464
+ patch_size (int | tuple(int)): Patch size. Default: 4.
465
+ in_channels (int): Number of input image channels. Default: 3.
466
+ embed_dim (int): Number of linear projection output channels. Default: 96.
467
+ depths (tuple[int]): Depths of each Swin Transformer stage.
468
+ num_heads (tuple[int]): Number of attention head of each stage.
469
+ window_size (int): Window size. Default: 7.
470
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
471
+ qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
472
+ qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
473
+ drop_rate (float): Dropout rate.
474
+ attn_drop_rate (float): Attention dropout rate. Default: 0.
475
+ drop_path_rate (float): Stochastic depth rate. Default: 0.2.
476
+ norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
477
+ ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
478
+ patch_norm (bool): If True, add normalization after patch embedding. Default: True.
479
+ out_indices (Sequence[int]): Output from which stages.
480
+ frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
481
+ -1 means not freezing any parameters.
482
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
483
+ """
484
+
485
+ def __init__(self,
486
+ pretrain_img_size=224,
487
+ patch_size=4,
488
+ in_channels=3,
489
+ embed_dim=96,
490
+ depths=[2, 2, 6, 2],
491
+ num_heads=[3, 6, 12, 24],
492
+ window_size=7,
493
+ mlp_ratio=4.,
494
+ qkv_bias=True,
495
+ qk_scale=None,
496
+ drop_rate=0.,
497
+ attn_drop_rate=0.,
498
+ drop_path_rate=0.2,
499
+ norm_layer=nn.LayerNorm,
500
+ ape=False,
501
+ patch_norm=True,
502
+ out_indices=(0, 1, 2, 3),
503
+ frozen_stages=-1,
504
+ use_checkpoint=False):
505
+ super().__init__()
506
+
507
+ self.pretrain_img_size = pretrain_img_size
508
+ self.num_layers = len(depths)
509
+ self.embed_dim = embed_dim
510
+ self.ape = ape
511
+ self.patch_norm = patch_norm
512
+ self.out_indices = out_indices
513
+ self.frozen_stages = frozen_stages
514
+
515
+ # split image into non-overlapping patches
516
+ self.patch_embed = PatchEmbed(
517
+ patch_size=patch_size, in_channels=in_channels, embed_dim=embed_dim,
518
+ norm_layer=norm_layer if self.patch_norm else None)
519
+
520
+ # absolute position embedding
521
+ if self.ape:
522
+ pretrain_img_size = to_2tuple(pretrain_img_size)
523
+ patch_size = to_2tuple(patch_size)
524
+ patches_resolution = [pretrain_img_size[0] // patch_size[0], pretrain_img_size[1] // patch_size[1]]
525
+
526
+ self.absolute_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1]))
527
+ trunc_normal_(self.absolute_pos_embed, std=.02)
528
+
529
+ self.pos_drop = nn.Dropout(p=drop_rate)
530
+
531
+ # stochastic depth
532
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
533
+
534
+ # build layers
535
+ self.layers = nn.ModuleList()
536
+ for i_layer in range(self.num_layers):
537
+ layer = BasicLayer(
538
+ dim=int(embed_dim * 2 ** i_layer),
539
+ depth=depths[i_layer],
540
+ num_heads=num_heads[i_layer],
541
+ window_size=window_size,
542
+ mlp_ratio=mlp_ratio,
543
+ qkv_bias=qkv_bias,
544
+ qk_scale=qk_scale,
545
+ drop=drop_rate,
546
+ attn_drop=attn_drop_rate,
547
+ drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
548
+ norm_layer=norm_layer,
549
+ downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
550
+ use_checkpoint=use_checkpoint)
551
+ self.layers.append(layer)
552
+
553
+ num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
554
+ self.num_features = num_features
555
+
556
+ # add a norm layer for each output
557
+ for i_layer in out_indices:
558
+ layer = norm_layer(num_features[i_layer])
559
+ layer_name = f'norm{i_layer}'
560
+ self.add_module(layer_name, layer)
561
+
562
+ self._freeze_stages()
563
+
564
+ def _freeze_stages(self):
565
+ if self.frozen_stages >= 0:
566
+ self.patch_embed.eval()
567
+ for param in self.patch_embed.parameters():
568
+ param.requires_grad = False
569
+
570
+ if self.frozen_stages >= 1 and self.ape:
571
+ self.absolute_pos_embed.requires_grad = False
572
+
573
+ if self.frozen_stages >= 2:
574
+ self.pos_drop.eval()
575
+ for i in range(0, self.frozen_stages - 1):
576
+ m = self.layers[i]
577
+ m.eval()
578
+ for param in m.parameters():
579
+ param.requires_grad = False
580
+
581
+ def init_weights(self, pretrained=None):
582
+ """Initialize the weights in backbone.
583
+
584
+ Args:
585
+ pretrained (str, optional): Path to pre-trained weights.
586
+ Defaults to None.
587
+ """
588
+
589
+ def _init_weights(m):
590
+ if isinstance(m, nn.Linear):
591
+ trunc_normal_(m.weight, std=.02)
592
+ if isinstance(m, nn.Linear) and m.bias is not None:
593
+ nn.init.constant_(m.bias, 0)
594
+ elif isinstance(m, nn.LayerNorm):
595
+ nn.init.constant_(m.bias, 0)
596
+ nn.init.constant_(m.weight, 1.0)
597
+
598
+ if isinstance(pretrained, str):
599
+ self.apply(_init_weights)
600
+ logger = get_root_logger()
601
+ load_checkpoint(self, pretrained, strict=False, logger=logger)
602
+ elif pretrained is None:
603
+ self.apply(_init_weights)
604
+ else:
605
+ raise TypeError('pretrained must be a str or None')
606
+
607
+ def forward(self, x):
608
+ """Forward function."""
609
+ x = self.patch_embed(x)
610
+
611
+ Wh, Ww = x.size(2), x.size(3)
612
+ if self.ape:
613
+ # interpolate the position embedding to the corresponding size
614
+ absolute_pos_embed = F.interpolate(self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic')
615
+ x = (x + absolute_pos_embed) # B Wh*Ww C
616
+
617
+ outs = []#x.contiguous()]
618
+ x = x.flatten(2).transpose(1, 2)
619
+ x = self.pos_drop(x)
620
+ for i in range(self.num_layers):
621
+ layer = self.layers[i]
622
+ x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
623
+
624
+ if i in self.out_indices:
625
+ norm_layer = getattr(self, f'norm{i}')
626
+ x_out = norm_layer(x_out)
627
+
628
+ out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
629
+ outs.append(out)
630
+
631
+ return tuple(outs)
632
+
633
+ def train(self, mode=True):
634
+ """Convert the model into training mode while keep layers freezed."""
635
+ super(SwinTransformer, self).train(mode)
636
+ self._freeze_stages()
637
+
638
+ def swin_v1_t():
639
+ model = SwinTransformer(embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7)
640
+ return model
641
+
642
+ def swin_v1_s():
643
+ model = SwinTransformer(embed_dim=96, depths=[2, 2, 18, 2], num_heads=[3, 6, 12, 24], window_size=7)
644
+ return model
645
+
646
+ def swin_v1_b():
647
+ model = SwinTransformer(embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12)
648
+ return model
649
+
650
+ def swin_v1_l():
651
+ model = SwinTransformer(embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=12)
652
+ return model
baseline.py ADDED
@@ -0,0 +1,318 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from collections import OrderedDict
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+ from torchvision.models import vgg16, vgg16_bn
8
+ from torchvision.models import resnet50
9
+ from kornia.filters import laplacian
10
+
11
+ from config import Config
12
+ from dataset import class_labels_TR_sorted
13
+ from models.backbones.build_backbone import build_backbone
14
+ from models.modules.decoder_blocks import BasicDecBlk, ResBlk, HierarAttDecBlk
15
+ from models.modules.lateral_blocks import BasicLatBlk
16
+ from models.modules.aspp import ASPP, ASPPDeformable
17
+ from models.modules.ing import *
18
+ from models.refinement.refiner import Refiner, RefinerPVTInChannels4, RefUNet
19
+ from models.refinement.stem_layer import StemLayer
20
+
21
+
22
+ class BiRefNet(nn.Module):
23
+ def __init__(self):
24
+ super(BiRefNet, self).__init__()
25
+ self.config = Config()
26
+ self.epoch = 1
27
+ self.bb = build_backbone(self.config.bb, pretrained=False)
28
+
29
+ channels = self.config.lateral_channels_in_collection
30
+
31
+ if self.config.auxiliary_classification:
32
+ self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
33
+ self.cls_head = nn.Sequential(
34
+ nn.Linear(channels[0], len(class_labels_TR_sorted))
35
+ )
36
+
37
+ if self.config.squeeze_block:
38
+ self.squeeze_module = nn.Sequential(*[
39
+ eval(self.config.squeeze_block.split('_x')[0])(channels[0]+sum(self.config.cxt), channels[0])
40
+ for _ in range(eval(self.config.squeeze_block.split('_x')[1]))
41
+ ])
42
+
43
+ self.decoder = Decoder(channels)
44
+
45
+ if self.config.locate_head:
46
+ self.locate_header = nn.ModuleList([
47
+ BasicDecBlk(channels[0], channels[-1]),
48
+ nn.Sequential(
49
+ nn.Conv2d(channels[-1], 1, 1, 1, 0),
50
+ )
51
+ ])
52
+
53
+ if self.config.ender:
54
+ self.dec_end = nn.Sequential(
55
+ nn.Conv2d(1, 16, 3, 1, 1),
56
+ nn.Conv2d(16, 1, 3, 1, 1),
57
+ nn.ReLU(inplace=True),
58
+ )
59
+
60
+ # refine patch-level segmentation
61
+ if self.config.refine:
62
+ if self.config.refine == 'itself':
63
+ self.stem_layer = StemLayer(in_channels=3+1, inter_channels=48, out_channels=3)
64
+ else:
65
+ self.refiner = eval('{}({})'.format(self.config.refine, 'in_channels=3+1'))
66
+
67
+ if self.config.freeze_bb:
68
+ # Freeze the backbone...
69
+ print(self.named_parameters())
70
+ for key, value in self.named_parameters():
71
+ if 'bb.' in key and 'refiner.' not in key:
72
+ value.requires_grad = False
73
+
74
+ def forward_enc(self, x):
75
+ if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
76
+ x1 = self.bb.conv1(x); x2 = self.bb.conv2(x1); x3 = self.bb.conv3(x2); x4 = self.bb.conv4(x3)
77
+ else:
78
+ x1, x2, x3, x4 = self.bb(x)
79
+ if self.config.mul_scl_ipt == 'cat':
80
+ B, C, H, W = x.shape
81
+ x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True))
82
+ x1 = torch.cat([x1, F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True)], dim=1)
83
+ x2 = torch.cat([x2, F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True)], dim=1)
84
+ x3 = torch.cat([x3, F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True)], dim=1)
85
+ x4 = torch.cat([x4, F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True)], dim=1)
86
+ elif self.config.mul_scl_ipt == 'add':
87
+ B, C, H, W = x.shape
88
+ x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True))
89
+ x1 = x1 + F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True)
90
+ x2 = x2 + F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True)
91
+ x3 = x3 + F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True)
92
+ x4 = x4 + F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True)
93
+ class_preds = self.cls_head(self.avgpool(x4).view(x4.shape[0], -1)) if self.training and self.config.auxiliary_classification else None
94
+ if self.config.cxt:
95
+ x4 = torch.cat(
96
+ (
97
+ *[
98
+ F.interpolate(x1, size=x4.shape[2:], mode='bilinear', align_corners=True),
99
+ F.interpolate(x2, size=x4.shape[2:], mode='bilinear', align_corners=True),
100
+ F.interpolate(x3, size=x4.shape[2:], mode='bilinear', align_corners=True),
101
+ ][-len(self.config.cxt):],
102
+ x4
103
+ ),
104
+ dim=1
105
+ )
106
+ return (x1, x2, x3, x4), class_preds
107
+
108
+ # def forward_loc(self, x):
109
+ # ########## Encoder ##########
110
+ # (x1, x2, x3, x4), class_preds = self.forward_enc(x)
111
+ # if self.config.squeeze_block:
112
+ # x4 = self.squeeze_module(x4)
113
+ # if self.config.locate_head:
114
+ # locate_preds = self.locate_header[1](
115
+ # F.interpolate(
116
+ # self.locate_header[0](
117
+ # F.interpolate(x4, size=x2.shape[2:], mode='bilinear', align_corners=True)
118
+ # ), size=x.shape[2:], mode='bilinear', align_corners=True
119
+ # )
120
+ # )
121
+
122
+ def forward_ori(self, x):
123
+ ########## Encoder ##########
124
+ (x1, x2, x3, x4), class_preds = self.forward_enc(x)
125
+ if self.config.squeeze_block:
126
+ x4 = self.squeeze_module(x4)
127
+ ########## Decoder ##########
128
+ features = [x, x1, x2, x3, x4]
129
+ if self.config.out_ref:
130
+ features.append(laplacian(torch.mean(x, dim=1).unsqueeze(1), kernel_size=5))
131
+ scaled_preds = self.decoder(features)
132
+ return scaled_preds, class_preds
133
+
134
+ def forward_ref(self, x, pred):
135
+ # refine patch-level segmentation
136
+ if pred.shape[2:] != x.shape[2:]:
137
+ pred = F.interpolate(pred, size=x.shape[2:], mode='bilinear', align_corners=True)
138
+ # pred = pred.sigmoid()
139
+ if self.config.refine == 'itself':
140
+ x = self.stem_layer(torch.cat([x, pred], dim=1))
141
+ scaled_preds, class_preds = self.forward_ori(x)
142
+ else:
143
+ scaled_preds = self.refiner([x, pred])
144
+ class_preds = None
145
+ return scaled_preds, class_preds
146
+
147
+ def forward_ref_end(self, x):
148
+ # remove the grids of concatenated preds
149
+ return self.dec_end(x) if self.config.ender else x
150
+
151
+
152
+ # def forward(self, x):
153
+ # if self.config.refine:
154
+ # scaled_preds, class_preds_ori = self.forward_ori(F.interpolate(x, size=(x.shape[2]//4, x.shape[3]//4), mode='bilinear', align_corners=True))
155
+ # class_preds_lst = [class_preds_ori]
156
+ # for _ in range(self.config.refine_iteration):
157
+ # scaled_preds_ref, class_preds_ref = self.forward_ref(x, scaled_preds[-1])
158
+ # scaled_preds += scaled_preds_ref
159
+ # class_preds_lst.append(class_preds_ref)
160
+ # else:
161
+ # scaled_preds, class_preds = self.forward_ori(x)
162
+ # class_preds_lst = [class_preds]
163
+ # return [scaled_preds, class_preds_lst] if self.training else scaled_preds
164
+
165
+ def forward(self, x):
166
+ scaled_preds, class_preds = self.forward_ori(x)
167
+ class_preds_lst = [class_preds]
168
+ return [scaled_preds, class_preds_lst] if self.training else scaled_preds
169
+
170
+
171
+ class Decoder(nn.Module):
172
+ def __init__(self, channels):
173
+ super(Decoder, self).__init__()
174
+ self.config = Config()
175
+ DecoderBlock = eval(self.config.dec_blk)
176
+ LateralBlock = eval(self.config.lat_blk)
177
+
178
+ if self.config.dec_ipt:
179
+ self.split = self.config.dec_ipt_split
180
+ N_dec_ipt = 64
181
+ DBlock = SimpleConvs
182
+ ic = 64
183
+ ipt_cha_opt = 1
184
+ self.ipt_blk4 = DBlock(2**8*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic)
185
+ self.ipt_blk3 = DBlock(2**6*3 if self.split else 3, [N_dec_ipt, channels[1]//8][ipt_cha_opt], inter_channels=ic)
186
+ self.ipt_blk2 = DBlock(2**4*3 if self.split else 3, [N_dec_ipt, channels[2]//8][ipt_cha_opt], inter_channels=ic)
187
+ self.ipt_blk1 = DBlock(2**0*3 if self.split else 3, [N_dec_ipt, channels[3]//8][ipt_cha_opt], inter_channels=ic)
188
+ else:
189
+ self.split = None
190
+
191
+ self.decoder_block4 = DecoderBlock(channels[0], channels[1])
192
+ self.decoder_block3 = DecoderBlock(channels[1]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[2])
193
+ self.decoder_block2 = DecoderBlock(channels[2]+([N_dec_ipt, channels[1]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3])
194
+ self.decoder_block1 = DecoderBlock(channels[3]+([N_dec_ipt, channels[2]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3]//2)
195
+ self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2+([N_dec_ipt, channels[3]//8][ipt_cha_opt] if self.config.dec_ipt else 0), 1, 1, 1, 0))
196
+
197
+ self.lateral_block4 = LateralBlock(channels[1], channels[1])
198
+ self.lateral_block3 = LateralBlock(channels[2], channels[2])
199
+ self.lateral_block2 = LateralBlock(channels[3], channels[3])
200
+
201
+ if self.config.ms_supervision:
202
+ self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0)
203
+ self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0)
204
+ self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0)
205
+
206
+ if self.config.out_ref:
207
+ _N = 16
208
+ # self.gdt_convs_4 = nn.Sequential(nn.Conv2d(channels[1], _N, 3, 1, 1), nn.BatchNorm2d(_N), nn.ReLU(inplace=True))
209
+ self.gdt_convs_3 = nn.Sequential(nn.Conv2d(channels[2], _N, 3, 1, 1), nn.BatchNorm2d(_N), nn.ReLU(inplace=True))
210
+ self.gdt_convs_2 = nn.Sequential(nn.Conv2d(channels[3], _N, 3, 1, 1), nn.BatchNorm2d(_N), nn.ReLU(inplace=True))
211
+
212
+ # self.gdt_convs_pred_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
213
+ self.gdt_convs_pred_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
214
+ self.gdt_convs_pred_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
215
+
216
+ # self.gdt_convs_attn_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
217
+ self.gdt_convs_attn_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
218
+ self.gdt_convs_attn_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
219
+
220
+
221
+ def get_patches_batch(self, x, p):
222
+ _size_h, _size_w = p.shape[2:]
223
+ patches_batch = []
224
+ for idx in range(x.shape[0]):
225
+ columns_x = torch.split(x[idx], split_size_or_sections=_size_w, dim=-1)
226
+ patches_x = []
227
+ for column_x in columns_x:
228
+ patches_x += [p.unsqueeze(0) for p in torch.split(column_x, split_size_or_sections=_size_h, dim=-2)]
229
+ patch_sample = torch.cat(patches_x, dim=1)
230
+ patches_batch.append(patch_sample)
231
+ return torch.cat(patches_batch, dim=0)
232
+
233
+ def forward(self, features):
234
+ if self.config.out_ref:
235
+ outs_gdt_pred = []
236
+ outs_gdt_label = []
237
+ x, x1, x2, x3, x4, gdt_gt = features
238
+ else:
239
+ x, x1, x2, x3, x4 = features
240
+ outs = []
241
+ p4 = self.decoder_block4(x4)
242
+ m4 = self.conv_ms_spvn_4(p4) if self.config.ms_supervision else None
243
+ _p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
244
+ _p3 = _p4 + self.lateral_block4(x3)
245
+ if self.config.dec_ipt:
246
+ patches_batch = self.get_patches_batch(x, _p3) if self.split else x
247
+ _p3 = torch.cat((_p3, self.ipt_blk4(F.interpolate(patches_batch, size=x3.shape[2:], mode='bilinear', align_corners=True))), 1)
248
+
249
+ p3 = self.decoder_block3(_p3)
250
+ m3 = self.conv_ms_spvn_3(p3) if self.config.ms_supervision else None
251
+ if self.config.out_ref:
252
+ # >> GT:
253
+ # m3 --dilation--> m3_dia
254
+ # G_3^gt * m3_dia --> G_3^m, which is the label of gradient
255
+ m3_dia = m3
256
+ gdt_label_main_3 = gdt_gt * F.interpolate(m3_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
257
+ outs_gdt_label.append(gdt_label_main_3)
258
+ # >> Pred:
259
+ # p3 --conv--BN--> F_3^G, where F_3^G predicts the \hat{G_3} with xx
260
+ # F_3^G --sigmoid--> A_3^G
261
+ p3_gdt = self.gdt_convs_3(p3)
262
+ gdt_pred_3 = self.gdt_convs_pred_3(p3_gdt)
263
+ outs_gdt_pred.append(gdt_pred_3)
264
+ gdt_attn_3 = self.gdt_convs_attn_3(p3_gdt).sigmoid()
265
+ # >> Finally:
266
+ # p3 = p3 * A_3^G
267
+ p3 = p3 * gdt_attn_3
268
+ _p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
269
+ _p2 = _p3 + self.lateral_block3(x2)
270
+ if self.config.dec_ipt:
271
+ patches_batch = self.get_patches_batch(x, _p2) if self.split else x
272
+ _p2 = torch.cat((_p2, self.ipt_blk3(F.interpolate(patches_batch, size=x2.shape[2:], mode='bilinear', align_corners=True))), 1)
273
+
274
+ p2 = self.decoder_block2(_p2)
275
+ m2 = self.conv_ms_spvn_2(p2) if self.config.ms_supervision else None
276
+ if self.config.out_ref:
277
+ # >> GT:
278
+ m2_dia = m2
279
+ gdt_label_main_2 = gdt_gt * F.interpolate(m2_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
280
+ outs_gdt_label.append(gdt_label_main_2)
281
+ # >> Pred:
282
+ p2_gdt = self.gdt_convs_2(p2)
283
+ gdt_pred_2 = self.gdt_convs_pred_2(p2_gdt)
284
+ outs_gdt_pred.append(gdt_pred_2)
285
+ gdt_attn_2 = self.gdt_convs_attn_2(p2_gdt).sigmoid()
286
+ # >> Finally:
287
+ p2 = p2 * gdt_attn_2
288
+ _p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
289
+ _p1 = _p2 + self.lateral_block2(x1)
290
+ if self.config.dec_ipt:
291
+ patches_batch = self.get_patches_batch(x, _p1) if self.split else x
292
+ _p1 = torch.cat((_p1, self.ipt_blk2(F.interpolate(patches_batch, size=x1.shape[2:], mode='bilinear', align_corners=True))), 1)
293
+
294
+ _p1 = self.decoder_block1(_p1)
295
+ _p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
296
+ if self.config.dec_ipt:
297
+ patches_batch = self.get_patches_batch(x, _p1) if self.split else x
298
+ _p1 = torch.cat((_p1, self.ipt_blk1(F.interpolate(patches_batch, size=x.shape[2:], mode='bilinear', align_corners=True))), 1)
299
+ p1_out = self.conv_out1(_p1)
300
+
301
+ if self.config.ms_supervision:
302
+ outs.append(m4)
303
+ outs.append(m3)
304
+ outs.append(m2)
305
+ outs.append(p1_out)
306
+ return outs if not (self.config.out_ref and self.training) else ([outs_gdt_pred, outs_gdt_label], outs)
307
+
308
+
309
+ class SimpleConvs(nn.Module):
310
+ def __init__(
311
+ self, in_channels: int, out_channels: int, inter_channels=64
312
+ ) -> None:
313
+ super().__init__()
314
+ self.conv1 = nn.Conv2d(in_channels, inter_channels, 3, 1, 1)
315
+ self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, 1)
316
+
317
+ def forward(self, x):
318
+ return self.conv_out(self.conv1(x))
birefnet_dis.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7db692b52f7f855c41d05e4427a05ac63a755f39f80e11d6185eb48b80acbea8
3
+ size 848968257
config.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import math
3
+
4
+
5
+ class Config():
6
+ def __init__(self) -> None:
7
+ self.ms_supervision = True
8
+ self.out_ref = self.ms_supervision and True
9
+ self.dec_ipt = True
10
+ self.dec_ipt_split = True
11
+ self.locate_head = False
12
+ self.cxt_num = [0, 3][1] # multi-scale skip connections from encoder
13
+ self.mul_scl_ipt = ['', 'add', 'cat'][2]
14
+ self.refine = ['', 'itself', 'RefUNet', 'Refiner', 'RefinerPVTInChannels4'][0]
15
+ self.progressive_ref = self.refine and True
16
+ self.ender = self.progressive_ref and False
17
+ self.scale = self.progressive_ref and 2
18
+ self.dec_att = ['', 'ASPP', 'ASPPDeformable'][2]
19
+ self.squeeze_block = ['', 'BasicDecBlk_x1', 'ResBlk_x4', 'ASPP_x3', 'ASPPDeformable_x3'][1]
20
+ self.dec_blk = ['BasicDecBlk', 'ResBlk', 'HierarAttDecBlk'][0]
21
+ self.auxiliary_classification = False
22
+ self.refine_iteration = 1
23
+ self.freeze_bb = False
24
+ self.precisionHigh = True
25
+ self.compile = True
26
+ self.load_all = True
27
+ self.verbose_eval = True
28
+
29
+ self.size = 1024
30
+ self.batch_size = 2
31
+ self.IoU_finetune_last_epochs = [0, -40][1] # choose 0 to skip
32
+ if self.dec_blk == 'HierarAttDecBlk':
33
+ self.batch_size = 2 ** [0, 1, 2, 3, 4][2]
34
+ self.model = [
35
+ 'BSL',
36
+ ][0]
37
+
38
+ # Components
39
+ self.lat_blk = ['BasicLatBlk'][0]
40
+ self.dec_channels_inter = ['fixed', 'adap'][0]
41
+
42
+ # Backbone
43
+ self.bb = [
44
+ 'vgg16', 'vgg16bn', 'resnet50', # 0, 1, 2
45
+ 'pvt_v2_b2', 'pvt_v2_b5', # 3-bs10, 4-bs5
46
+ 'swin_v1_b', 'swin_v1_l' # 5-bs9, 6-bs6
47
+ ][6]
48
+ self.lateral_channels_in_collection = {
49
+ 'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
50
+ 'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
51
+ 'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
52
+ }[self.bb]
53
+ if self.mul_scl_ipt == 'cat':
54
+ self.lateral_channels_in_collection = [channel * 2 for channel in self.lateral_channels_in_collection]
55
+ self.cxt = self.lateral_channels_in_collection[1:][::-1][-self.cxt_num:] if self.cxt_num else []
56
+ self.sys_home_dir = '/root/autodl-tmp'
57
+ self.weights_root_dir = os.path.join(self.sys_home_dir, 'weights')
58
+ self.weights = {
59
+ 'pvt_v2_b2': os.path.join(self.weights_root_dir, 'pvt_v2_b2.pth'),
60
+ 'pvt_v2_b5': os.path.join(self.weights_root_dir, ['pvt_v2_b5.pth', 'pvt_v2_b5_22k.pth'][0]),
61
+ 'swin_v1_b': os.path.join(self.weights_root_dir, ['swin_base_patch4_window12_384_22kto1k.pth', 'swin_base_patch4_window12_384_22k.pth'][0]),
62
+ 'swin_v1_l': os.path.join(self.weights_root_dir, ['swin_large_patch4_window12_384_22kto1k.pth', 'swin_large_patch4_window12_384_22k.pth'][0]),
63
+ }
64
+
65
+ # Training
66
+ self.num_workers = 5 # will be decrease to min(it, batch_size) at the initialization of the data_loader
67
+ self.optimizer = ['Adam', 'AdamW'][0]
68
+ self.lr = 1e-5 * math.sqrt(self.batch_size / 5) # adapt the lr linearly
69
+ self.lr_decay_epochs = [1e4] # Set to negative N to decay the lr in the last N-th epoch.
70
+ self.lr_decay_rate = 0.5
71
+ self.only_S_MAE = False
72
+ self.SDPA_enabled = False # Bug. Slower and errors occur in multi-GPUs
73
+
74
+ # Data
75
+ self.data_root_dir = os.path.join(self.sys_home_dir, 'datasets/dis')
76
+ self.dataset = ['DIS5K', 'COD', 'SOD'][0]
77
+ self.preproc_methods = ['flip', 'enhance', 'rotate', 'pepper', 'crop'][:4]
78
+
79
+ # Loss
80
+ self.lambdas_pix_last = {
81
+ # not 0 means opening this loss
82
+ # original rate -- 1 : 30 : 1.5 : 0.2, bce x 30
83
+ 'bce': 30 * 1, # high performance
84
+ 'iou': 0.5 * 1, # 0 / 255
85
+ 'iou_patch': 0.5 * 0, # 0 / 255, win_size = (64, 64)
86
+ 'mse': 150 * 0, # can smooth the saliency map
87
+ 'triplet': 3 * 0,
88
+ 'reg': 100 * 0,
89
+ 'ssim': 10 * 1, # help contours,
90
+ 'cnt': 5 * 0, # help contours
91
+ }
92
+ self.lambdas_cls = {
93
+ 'ce': 5.0
94
+ }
95
+ # Adv
96
+ self.lambda_adv_g = 10. * 0 # turn to 0 to avoid adv training
97
+ self.lambda_adv_d = 3. * (self.lambda_adv_g > 0)
98
+
99
+ # others
100
+ self.device = [0, 'cpu'][1] # .to(0) = .to('cuda:0')
101
+
102
+ self.batch_size_valid = 1
103
+ self.rand_seed = 7
104
+ run_sh_file = [f for f in os.listdir('.') if 'train.sh' == f] + [os.path.join('..', f) for f in os.listdir('..') if 'train.sh' == f]
105
+ # with open(run_sh_file[0], 'r') as f:
106
+ # lines = f.readlines()
107
+ # self.save_last = int([l.strip() for l in lines if 'val_last=' in l][0].split('=')[-1])
108
+ # self.save_step = int([l.strip() for l in lines if 'step=' in l][0].split('=')[-1])
109
+ # self.val_step = [0, self.save_step][0]
dataset.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import cv2
3
+ from tqdm import tqdm
4
+ from PIL import Image
5
+ from torch.utils import data
6
+ from torchvision import transforms
7
+
8
+ from preproc import preproc
9
+ from config import Config
10
+
11
+
12
+ Image.MAX_IMAGE_PIXELS = None # remove DecompressionBombWarning
13
+ config = Config()
14
+ _class_labels_TR_sorted = 'Airplane, Ant, Antenna, Archery, Axe, BabyCarriage, Bag, BalanceBeam, Balcony, Balloon, Basket, BasketballHoop, Beatle, Bed, Bee, Bench, Bicycle, BicycleFrame, BicycleStand, Boat, Bonsai, BoomLift, Bridge, BunkBed, Butterfly, Button, Cable, CableLift, Cage, Camcorder, Cannon, Canoe, Car, CarParkDropArm, Carriage, Cart, Caterpillar, CeilingLamp, Centipede, Chair, Clip, Clock, Clothes, CoatHanger, Comb, ConcretePumpTruck, Crack, Crane, Cup, DentalChair, Desk, DeskChair, Diagram, DishRack, DoorHandle, Dragonfish, Dragonfly, Drum, Earphone, Easel, ElectricIron, Excavator, Eyeglasses, Fan, Fence, Fencing, FerrisWheel, FireExtinguisher, Fishing, Flag, FloorLamp, Forklift, GasStation, Gate, Gear, Goal, Golf, GymEquipment, Hammock, Handcart, Handcraft, Handrail, HangGlider, Harp, Harvester, Headset, Helicopter, Helmet, Hook, HorizontalBar, Hydrovalve, IroningTable, Jewelry, Key, KidsPlayground, Kitchenware, Kite, Knife, Ladder, LaundryRack, Lightning, Lobster, Locust, Machine, MachineGun, MagazineRack, Mantis, Medal, MemorialArchway, Microphone, Missile, MobileHolder, Monitor, Mosquito, Motorcycle, MovingTrolley, Mower, MusicPlayer, MusicStand, ObservationTower, Octopus, OilWell, OlympicLogo, OperatingTable, OutdoorFitnessEquipment, Parachute, Pavilion, Piano, Pipe, PlowHarrow, PoleVault, Punchbag, Rack, Racket, Rifle, Ring, Robot, RockClimbing, Rope, Sailboat, Satellite, Scaffold, Scale, Scissor, Scooter, Sculpture, Seadragon, Seahorse, Seal, SewingMachine, Ship, Shoe, ShoppingCart, ShoppingTrolley, Shower, Shrimp, Signboard, Skateboarding, Skeleton, Skiing, Spade, SpeedBoat, Spider, Spoon, Stair, Stand, Stationary, SteeringWheel, Stethoscope, Stool, Stove, StreetLamp, SweetStand, Swing, Sword, TV, Table, TableChair, TableLamp, TableTennis, Tank, Tapeline, Teapot, Telescope, Tent, TobaccoPipe, Toy, Tractor, TrafficLight, TrafficSign, Trampoline, TransmissionTower, Tree, Tricycle, TrimmerCover, Tripod, Trombone, Truck, Trumpet, Tuba, UAV, Umbrella, UnevenBars, UtilityPole, VacuumCleaner, Violin, Wakesurfing, Watch, WaterTower, WateringPot, Well, WellLid, Wheel, Wheelchair, WindTurbine, Windmill, WineGlass, WireWhisk, Yacht'
15
+ class_labels_TR_sorted = _class_labels_TR_sorted.split(', ')
16
+
17
+
18
+ class MyData(data.Dataset):
19
+ def __init__(self, data_root, image_size, is_train=True):
20
+ self.size_train = image_size
21
+ self.size_test = image_size
22
+ self.keep_size = not config.size
23
+ self.data_size = (config.size, config.size)
24
+ self.is_train = is_train
25
+ self.load_all = config.load_all
26
+ self.device = config.device
27
+ self.dataset = data_root.replace('\\', '/').split('/')[-1]
28
+ if self.is_train and config.auxiliary_classification:
29
+ self.cls_name2id = {_name: _id for _id, _name in enumerate(class_labels_TR_sorted)}
30
+ self.transform_image = transforms.Compose([
31
+ transforms.Resize(self.data_size),
32
+ transforms.ToTensor(),
33
+ transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
34
+ ][self.load_all or self.keep_size:])
35
+ self.transform_label = transforms.Compose([
36
+ transforms.Resize(self.data_size),
37
+ transforms.ToTensor(),
38
+ ][self.load_all or self.keep_size:])
39
+ ## 'im' and 'gt' need modifying
40
+ image_root = os.path.join(data_root, 'im')
41
+ self.image_paths = [os.path.join(image_root, p) for p in os.listdir(image_root)]
42
+ self.label_paths = [p.replace('/im/', '/gt/').replace('.jpg', '.png') for p in self.image_paths]
43
+ if self.load_all:
44
+ self.images_loaded, self.labels_loaded = [], []
45
+ self.class_labels_loaded = []
46
+ # for image_path, label_path in zip(self.image_paths, self.label_paths):
47
+ for image_path, label_path in tqdm(zip(self.image_paths, self.label_paths), total=len(self.image_paths)):
48
+ _image = cv2.imread(image_path)
49
+ _label = cv2.imread(label_path, cv2.IMREAD_GRAYSCALE)
50
+ if not self.keep_size:
51
+ _image_rs = cv2.resize(_image, (config.size, config.size), interpolation=cv2.INTER_LINEAR)
52
+ _label_rs = cv2.resize(_label, (config.size, config.size), interpolation=cv2.INTER_LINEAR)
53
+ self.images_loaded.append(
54
+ Image.fromarray(cv2.cvtColor(_image_rs, cv2.COLOR_BGR2RGB)).convert('RGB')
55
+ )
56
+ self.labels_loaded.append(
57
+ Image.fromarray(_label_rs).convert('L')
58
+ )
59
+ self.class_labels_loaded.append(
60
+ self.cls_name2id[label_path.split('/')[-1].split('#')[3]] if self.is_train and config.auxiliary_classification else -1
61
+ )
62
+
63
+
64
+ def __getitem__(self, index):
65
+
66
+ if self.load_all:
67
+ image = self.images_loaded[index]
68
+ label = self.labels_loaded[index]
69
+ class_label = self.class_labels_loaded[index] if self.is_train and config.auxiliary_classification else -1
70
+ else:
71
+ image = Image.open(self.image_paths[index]).convert('RGB')
72
+ label = Image.open(self.label_paths[index]).convert('L')
73
+ class_label = self.cls_name2id[self.label_paths[index].split('/')[-1].split('#')[3]] if self.is_train and config.auxiliary_classification else -1
74
+
75
+ # loading image and label
76
+ if self.is_train:
77
+ image, label = preproc(image, label, preproc_methods=config.preproc_methods)
78
+ # else:
79
+ # if _label.shape[0] > 2048 or _label.shape[1] > 2048:
80
+ # _image = cv2.resize(_image, (2048, 2048), interpolation=cv2.INTER_LINEAR)
81
+ # _label = cv2.resize(_label, (2048, 2048), interpolation=cv2.INTER_LINEAR)
82
+
83
+ image, label = self.transform_image(image), self.transform_label(label)
84
+
85
+ if self.is_train:
86
+ return image, label, class_label
87
+ else:
88
+ return image, label, self.label_paths[index]
89
+
90
+ def __len__(self):
91
+ return len(self.image_paths)
examples/DIS-TE1-firstOne.jpg ADDED

Git LFS Details

  • SHA256: 5ea97748f3ece483ab1bafa7d91488329d3c8ee706de67745a0fe94a43dffa21
  • Pointer size: 131 Bytes
  • Size of remote file: 691 kB
examples/DIS-TE2-firstOne.jpg ADDED

Git LFS Details

  • SHA256: 7aadd024821af847a988f4ec98b2ddf8db6141862c3f5b6c4037f33edafc4d4b
  • Pointer size: 132 Bytes
  • Size of remote file: 1.45 MB
examples/DIS-TE3-firstOne.jpg ADDED

Git LFS Details

  • SHA256: cb3e16dcd99f4be89e34c61519d1e4064d2be343daa9a67e428325f02393d39a
  • Pointer size: 132 Bytes
  • Size of remote file: 3.91 MB
examples/DIS-TE4-firstOne.jpg ADDED

Git LFS Details

  • SHA256: 8bcf9ce54a7d397b4d586bce7bf826eaf298ff33848add0c555ce1547db48496
  • Pointer size: 132 Bytes
  • Size of remote file: 1.59 MB
examples/DIS-VD-firstOne.jpg ADDED

Git LFS Details

  • SHA256: 31f74f05438f6d2c7d2e609a2ca36f5c0986eed21eb9ff42009609a308ff8af1
  • Pointer size: 131 Bytes
  • Size of remote file: 771 kB
modules/aspp.py ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ from models.modules.deform_conv import DeformableConv2d
5
+ from config import Config
6
+
7
+
8
+ config = Config()
9
+
10
+
11
+ class ASPPComplex(nn.Module):
12
+ def __init__(self, in_channels=64, out_channels=None, output_stride=16):
13
+ super(ASPPComplex, self).__init__()
14
+ self.down_scale = 1
15
+ if out_channels is None:
16
+ out_channels = in_channels
17
+ self.in_channelster = 256 // self.down_scale
18
+ if output_stride == 16:
19
+ dilations = [1, 6, 12, 18]
20
+ elif output_stride == 8:
21
+ dilations = [1, 12, 24, 36]
22
+ else:
23
+ raise NotImplementedError
24
+
25
+ self.aspp1 = _ASPPModule(in_channels, self.in_channelster, 1, padding=0, dilation=dilations[0])
26
+ self.aspp2 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[1], dilation=dilations[1])
27
+ self.aspp3 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[2], dilation=dilations[2])
28
+ self.aspp4 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[3], dilation=dilations[3])
29
+
30
+ self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
31
+ nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
32
+ nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
33
+ nn.ReLU(inplace=True))
34
+ self.conv1 = nn.Conv2d(self.in_channelster * 5, out_channels, 1, bias=False)
35
+ self.bn1 = nn.BatchNorm2d(out_channels)
36
+ self.relu = nn.ReLU(inplace=True)
37
+ self.dropout = nn.Dropout(0.5)
38
+
39
+ def forward(self, x):
40
+ x1 = self.aspp1(x)
41
+ x2 = self.aspp2(x)
42
+ x3 = self.aspp3(x)
43
+ x4 = self.aspp4(x)
44
+ x5 = self.global_avg_pool(x)
45
+ x5 = F.interpolate(x5, size=x1.size()[2:], mode='bilinear', align_corners=True)
46
+ x = torch.cat((x1, x2, x3, x4, x5), dim=1)
47
+
48
+ x = self.conv1(x)
49
+ x = self.bn1(x)
50
+ x = self.relu(x)
51
+
52
+ return self.dropout(x)
53
+
54
+
55
+ class _ASPPModule(nn.Module):
56
+ def __init__(self, in_channels, planes, kernel_size, padding, dilation):
57
+ super(_ASPPModule, self).__init__()
58
+ self.atrous_conv = nn.Conv2d(in_channels, planes, kernel_size=kernel_size,
59
+ stride=1, padding=padding, dilation=dilation, bias=False)
60
+ self.bn = nn.BatchNorm2d(planes)
61
+ self.relu = nn.ReLU(inplace=True)
62
+
63
+ def forward(self, x):
64
+ x = self.atrous_conv(x)
65
+ x = self.bn(x)
66
+
67
+ return self.relu(x)
68
+
69
+ class ASPP(nn.Module):
70
+ def __init__(self, in_channels=64, out_channels=None, output_stride=16):
71
+ super(ASPP, self).__init__()
72
+ self.down_scale = 1
73
+ if out_channels is None:
74
+ out_channels = in_channels
75
+ self.in_channelster = 256 // self.down_scale
76
+ if output_stride == 16:
77
+ dilations = [1, 6, 12, 18]
78
+ elif output_stride == 8:
79
+ dilations = [1, 12, 24, 36]
80
+ else:
81
+ raise NotImplementedError
82
+
83
+ self.aspp1 = _ASPPModule(in_channels, self.in_channelster, 1, padding=0, dilation=dilations[0])
84
+ self.aspp2 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[1], dilation=dilations[1])
85
+ self.aspp3 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[2], dilation=dilations[2])
86
+ self.aspp4 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[3], dilation=dilations[3])
87
+
88
+ self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
89
+ nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
90
+ nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
91
+ nn.ReLU(inplace=True))
92
+ self.conv1 = nn.Conv2d(self.in_channelster * 5, out_channels, 1, bias=False)
93
+ self.bn1 = nn.BatchNorm2d(out_channels)
94
+ self.relu = nn.ReLU(inplace=True)
95
+ self.dropout = nn.Dropout(0.5)
96
+
97
+ def forward(self, x):
98
+ x1 = self.aspp1(x)
99
+ x2 = self.aspp2(x)
100
+ x3 = self.aspp3(x)
101
+ x4 = self.aspp4(x)
102
+ x5 = self.global_avg_pool(x)
103
+ x5 = F.interpolate(x5, size=x1.size()[2:], mode='bilinear', align_corners=True)
104
+ x = torch.cat((x1, x2, x3, x4, x5), dim=1)
105
+
106
+ x = self.conv1(x)
107
+ x = self.bn1(x)
108
+ x = self.relu(x)
109
+
110
+ return self.dropout(x)
111
+
112
+
113
+ ##################### Deformable
114
+ class _ASPPModuleDeformable(nn.Module):
115
+ def __init__(self, in_channels, planes, kernel_size, padding):
116
+ super(_ASPPModuleDeformable, self).__init__()
117
+ self.atrous_conv = DeformableConv2d(in_channels, planes, kernel_size=kernel_size,
118
+ stride=1, padding=padding, bias=False)
119
+ self.bn = nn.BatchNorm2d(planes)
120
+ self.relu = nn.ReLU(inplace=True)
121
+
122
+ def forward(self, x):
123
+ x = self.atrous_conv(x)
124
+ x = self.bn(x)
125
+
126
+ return self.relu(x)
127
+
128
+
129
+ class ASPPDeformable(nn.Module):
130
+ def __init__(self, in_channels, out_channels=None, num_parallel_block=1):
131
+ super(ASPPDeformable, self).__init__()
132
+ self.down_scale = 1
133
+ if out_channels is None:
134
+ out_channels = in_channels
135
+ self.in_channelster = 256 // self.down_scale
136
+
137
+ self.aspp1 = _ASPPModuleDeformable(in_channels, self.in_channelster, 1, padding=0)
138
+ self.aspp_deforms = nn.ModuleList([
139
+ _ASPPModuleDeformable(in_channels, self.in_channelster, 3, padding=1) for _ in range(num_parallel_block)
140
+ ])
141
+
142
+ self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
143
+ nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
144
+ nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
145
+ nn.ReLU(inplace=True))
146
+ self.conv1 = nn.Conv2d(self.in_channelster * (2 + len(self.aspp_deforms)), out_channels, 1, bias=False)
147
+ self.bn1 = nn.BatchNorm2d(out_channels)
148
+ self.relu = nn.ReLU(inplace=True)
149
+ self.dropout = nn.Dropout(0.5)
150
+
151
+ def forward(self, x):
152
+ x1 = self.aspp1(x)
153
+ x_aspp_deforms = [aspp_deform(x) for aspp_deform in self.aspp_deforms]
154
+ x5 = self.global_avg_pool(x)
155
+ x5 = F.interpolate(x5, size=x1.size()[2:], mode='bilinear', align_corners=True)
156
+ x = torch.cat((x1, *x_aspp_deforms, x5), dim=1)
157
+
158
+ x = self.conv1(x)
159
+ x = self.bn1(x)
160
+ x = self.relu(x)
161
+
162
+ return self.dropout(x)
modules/attentions.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ from torch import nn
4
+ from torch.nn import init
5
+
6
+
7
+ class SEWeightModule(nn.Module):
8
+ def __init__(self, channels, reduction=16):
9
+ super(SEWeightModule, self).__init__()
10
+ self.avg_pool = nn.AdaptiveAvgPool2d(1)
11
+ self.fc1 = nn.Conv2d(channels, channels//reduction, kernel_size=1, padding=0)
12
+ self.relu = nn.ReLU(inplace=True)
13
+ self.fc2 = nn.Conv2d(channels//reduction, channels, kernel_size=1, padding=0)
14
+ self.sigmoid = nn.Sigmoid()
15
+
16
+ def forward(self, x):
17
+ out = self.avg_pool(x)
18
+ out = self.fc1(out)
19
+ out = self.relu(out)
20
+ out = self.fc2(out)
21
+ weight = self.sigmoid(out)
22
+ return weight
23
+
24
+
25
+ class PSA(nn.Module):
26
+
27
+ def __init__(self, in_channels, S=4, reduction=4):
28
+ super().__init__()
29
+ self.S = S
30
+
31
+ _convs = []
32
+ for i in range(S):
33
+ _convs.append(nn.Conv2d(in_channels//S, in_channels//S, kernel_size=2*(i+1)+1, padding=i+1))
34
+ self.convs = nn.ModuleList(_convs)
35
+
36
+ self.se_block = SEWeightModule(in_channels//S, reduction=S*reduction)
37
+
38
+ self.softmax = nn.Softmax(dim=1)
39
+
40
+ def forward(self, x):
41
+ b, c, h, w = x.size()
42
+
43
+ # Step1: SPC module
44
+ SPC_out = x.view(b, self.S, c//self.S, h, w) #bs,s,ci,h,w
45
+ for idx, conv in enumerate(self.convs):
46
+ SPC_out[:,idx,:,:,:] = conv(SPC_out[:,idx,:,:,:].clone())
47
+
48
+ # Step2: SE weight
49
+ se_out=[]
50
+ for idx in range(self.S):
51
+ se_out.append(self.se_block(SPC_out[:, idx, :, :, :]))
52
+ SE_out = torch.stack(se_out, dim=1)
53
+ SE_out = SE_out.expand_as(SPC_out)
54
+
55
+ # Step3: Softmax
56
+ softmax_out = self.softmax(SE_out)
57
+
58
+ # Step4: SPA
59
+ PSA_out = SPC_out * softmax_out
60
+ PSA_out = PSA_out.view(b, -1, h, w)
61
+
62
+ return PSA_out
63
+
64
+
65
+ class SGE(nn.Module):
66
+
67
+ def __init__(self, groups):
68
+ super().__init__()
69
+ self.groups=groups
70
+ self.avg_pool = nn.AdaptiveAvgPool2d(1)
71
+ self.weight=nn.Parameter(torch.zeros(1,groups,1,1))
72
+ self.bias=nn.Parameter(torch.zeros(1,groups,1,1))
73
+ self.sig=nn.Sigmoid()
74
+
75
+ def forward(self, x):
76
+ b, c, h,w=x.shape
77
+ x=x.view(b*self.groups,-1,h,w) #bs*g,dim//g,h,w
78
+ xn=x*self.avg_pool(x) #bs*g,dim//g,h,w
79
+ xn=xn.sum(dim=1,keepdim=True) #bs*g,1,h,w
80
+ t=xn.view(b*self.groups,-1) #bs*g,h*w
81
+
82
+ t=t-t.mean(dim=1,keepdim=True) #bs*g,h*w
83
+ std=t.std(dim=1,keepdim=True)+1e-5
84
+ t=t/std #bs*g,h*w
85
+ t=t.view(b,self.groups,h,w) #bs,g,h*w
86
+
87
+ t=t*self.weight+self.bias #bs,g,h*w
88
+ t=t.view(b*self.groups,1,h,w) #bs*g,1,h*w
89
+ x=x*self.sig(t)
90
+ x=x.view(b,c,h,w)
91
+
92
+ return x
93
+
modules/decoder_blocks.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from models.modules.aspp import ASPP, ASPPDeformable
4
+ from models.modules.attentions import PSA, SGE
5
+ from config import Config
6
+
7
+
8
+ config = Config()
9
+
10
+
11
+ class BasicDecBlk(nn.Module):
12
+ def __init__(self, in_channels=64, out_channels=64, inter_channels=64):
13
+ super(BasicDecBlk, self).__init__()
14
+ inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
15
+ self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1)
16
+ self.relu_in = nn.ReLU(inplace=True)
17
+ if config.dec_att == 'ASPP':
18
+ self.dec_att = ASPP(in_channels=inter_channels)
19
+ elif config.dec_att == 'ASPPDeformable':
20
+ self.dec_att = ASPPDeformable(in_channels=inter_channels)
21
+ self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
22
+ self.bn_in = nn.BatchNorm2d(inter_channels)
23
+ self.bn_out = nn.BatchNorm2d(out_channels)
24
+
25
+ def forward(self, x):
26
+ x = self.conv_in(x)
27
+ x = self.bn_in(x)
28
+ x = self.relu_in(x)
29
+ if hasattr(self, 'dec_att'):
30
+ x = self.dec_att(x)
31
+ x = self.conv_out(x)
32
+ x = self.bn_out(x)
33
+ return x
34
+
35
+
36
+ class ResBlk(nn.Module):
37
+ def __init__(self, in_channels=64, out_channels=None, inter_channels=64):
38
+ super(ResBlk, self).__init__()
39
+ if out_channels is None:
40
+ out_channels = in_channels
41
+ inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
42
+
43
+ self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1)
44
+ self.bn_in = nn.BatchNorm2d(inter_channels)
45
+ self.relu_in = nn.ReLU(inplace=True)
46
+
47
+ if config.dec_att == 'ASPP':
48
+ self.dec_att = ASPP(in_channels=inter_channels)
49
+ elif config.dec_att == 'ASPPDeformable':
50
+ self.dec_att = ASPPDeformable(in_channels=inter_channels)
51
+
52
+ self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
53
+ self.bn_out = nn.BatchNorm2d(out_channels)
54
+
55
+ self.conv_resi = nn.Conv2d(in_channels, out_channels, 1, 1, 0)
56
+
57
+ def forward(self, x):
58
+ _x = self.conv_resi(x)
59
+ x = self.conv_in(x)
60
+ x = self.bn_in(x)
61
+ x = self.relu_in(x)
62
+ if hasattr(self, 'dec_att'):
63
+ x = self.dec_att(x)
64
+ x = self.conv_out(x)
65
+ x = self.bn_out(x)
66
+ return x + _x
67
+
68
+
69
+ class HierarAttDecBlk(nn.Module):
70
+ def __init__(self, in_channels=64, out_channels=None, inter_channels=64):
71
+ super(HierarAttDecBlk, self).__init__()
72
+ if out_channels is None:
73
+ out_channels = in_channels
74
+ inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
75
+ self.split_y = 8 # must be divided by channels of all intermediate features
76
+ self.split_x = 8
77
+
78
+ self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, 1)
79
+
80
+ self.psa = PSA(inter_channels*self.split_y*self.split_x, S=config.batch_size)
81
+ self.sge = SGE(groups=config.batch_size)
82
+
83
+ if config.dec_att == 'ASPP':
84
+ self.dec_att = ASPP(in_channels=inter_channels)
85
+ elif config.dec_att == 'ASPPDeformable':
86
+ self.dec_att = ASPPDeformable(in_channels=inter_channels)
87
+ self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, 1)
88
+
89
+ def forward(self, x):
90
+ x = self.conv_in(x)
91
+ N, C, H, W = x.shape
92
+ x_patchs = x.reshape(N, -1, H//self.split_y, W//self.split_x)
93
+
94
+ # Hierarchical attention: group attention X patch spatial attention
95
+ x_patchs = self.psa(x_patchs) # Group Channel Attention -- each group is a single image
96
+ x_patchs = self.sge(x_patchs) # Patch Spatial Attention
97
+ x = x.reshape(N, C, H, W)
98
+ if hasattr(self, 'dec_att'):
99
+ x = self.dec_att(x)
100
+ x = self.conv_out(x)
101
+ return x
modules/deform_conv.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from torchvision.ops import deform_conv2d
4
+
5
+
6
+ class DeformableConv2d(nn.Module):
7
+ def __init__(self,
8
+ in_channels,
9
+ out_channels,
10
+ kernel_size=3,
11
+ stride=1,
12
+ padding=1,
13
+ bias=False):
14
+
15
+ super(DeformableConv2d, self).__init__()
16
+
17
+ assert type(kernel_size) == tuple or type(kernel_size) == int
18
+
19
+ kernel_size = kernel_size if type(kernel_size) == tuple else (kernel_size, kernel_size)
20
+ self.stride = stride if type(stride) == tuple else (stride, stride)
21
+ self.padding = padding
22
+
23
+ self.offset_conv = nn.Conv2d(in_channels,
24
+ 2 * kernel_size[0] * kernel_size[1],
25
+ kernel_size=kernel_size,
26
+ stride=stride,
27
+ padding=self.padding,
28
+ bias=True)
29
+
30
+ nn.init.constant_(self.offset_conv.weight, 0.)
31
+ nn.init.constant_(self.offset_conv.bias, 0.)
32
+
33
+ self.modulator_conv = nn.Conv2d(in_channels,
34
+ 1 * kernel_size[0] * kernel_size[1],
35
+ kernel_size=kernel_size,
36
+ stride=stride,
37
+ padding=self.padding,
38
+ bias=True)
39
+
40
+ nn.init.constant_(self.modulator_conv.weight, 0.)
41
+ nn.init.constant_(self.modulator_conv.bias, 0.)
42
+
43
+ self.regular_conv = nn.Conv2d(in_channels,
44
+ out_channels=out_channels,
45
+ kernel_size=kernel_size,
46
+ stride=stride,
47
+ padding=self.padding,
48
+ bias=bias)
49
+
50
+ def forward(self, x):
51
+ #h, w = x.shape[2:]
52
+ #max_offset = max(h, w)/4.
53
+
54
+ offset = self.offset_conv(x)#.clamp(-max_offset, max_offset)
55
+ modulator = 2. * torch.sigmoid(self.modulator_conv(x))
56
+
57
+ x = deform_conv2d(
58
+ input=x,
59
+ offset=offset,
60
+ weight=self.regular_conv.weight,
61
+ bias=self.regular_conv.bias,
62
+ padding=self.padding,
63
+ mask=modulator,
64
+ stride=self.stride,
65
+ )
66
+ return x
modules/ing.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ from models.modules.mlp import MLPLayer
3
+
4
+
5
+ class BlockA(nn.Module):
6
+ def __init__(self, in_channels=64, out_channels=64, inter_channels=64, mlp_ratio=4.):
7
+ super(BlockA, self).__init__()
8
+ inter_channels = in_channels
9
+ self.conv = nn.Conv2d(in_channels, inter_channels, 3, 1, 1)
10
+ self.norm1 = nn.LayerNorm(inter_channels)
11
+ self.ffn = MLPLayer(in_features=inter_channels,
12
+ hidden_features=int(inter_channels * mlp_ratio),
13
+ act_layer=nn.GELU,
14
+ drop=0.)
15
+ self.norm2 = nn.LayerNorm(inter_channels)
16
+
17
+ def forward(self, x):
18
+ B, C, H, W = x.shape
19
+ _x = self.conv(x)
20
+ _x = _x.flatten(2).transpose(1, 2)
21
+ _x = self.norm1(_x)
22
+ x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
23
+
24
+ x = x + _x
25
+ _x1 = self.ffn(x)
26
+ _x1 = self.norm2(_x1)
27
+ _x1 = _x1.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
28
+ x = x + _x1
29
+ return x
modules/lateral_blocks.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ from functools import partial
6
+
7
+ from config import Config
8
+
9
+
10
+ config = Config()
11
+
12
+
13
+ class BasicLatBlk(nn.Module):
14
+ def __init__(self, in_channels=64, out_channels=64, inter_channels=64):
15
+ super(BasicLatBlk, self).__init__()
16
+ inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
17
+ self.conv = nn.Conv2d(in_channels, out_channels, 1, 1, 0)
18
+
19
+ def forward(self, x):
20
+ x = self.conv(x)
21
+ return x
modules/mlp.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from functools import partial
4
+
5
+ from timm.models.layers import DropPath, to_2tuple, trunc_normal_
6
+ from timm.models.registry import register_model
7
+
8
+ import math
9
+
10
+
11
+ class MLPLayer(nn.Module):
12
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
13
+ super().__init__()
14
+ out_features = out_features or in_features
15
+ hidden_features = hidden_features or in_features
16
+ self.fc1 = nn.Linear(in_features, hidden_features)
17
+ self.act = act_layer()
18
+ self.fc2 = nn.Linear(hidden_features, out_features)
19
+ self.drop = nn.Dropout(drop)
20
+
21
+ def forward(self, x):
22
+ x = self.fc1(x)
23
+ x = self.act(x)
24
+ x = self.drop(x)
25
+ x = self.fc2(x)
26
+ x = self.drop(x)
27
+ return x
28
+
29
+
30
+ class Attention(nn.Module):
31
+ def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
32
+ super().__init__()
33
+ assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
34
+
35
+ self.dim = dim
36
+ self.num_heads = num_heads
37
+ head_dim = dim // num_heads
38
+ self.scale = qk_scale or head_dim ** -0.5
39
+
40
+ self.q = nn.Linear(dim, dim, bias=qkv_bias)
41
+ self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
42
+ self.attn_drop = nn.Dropout(attn_drop)
43
+ self.proj = nn.Linear(dim, dim)
44
+ self.proj_drop = nn.Dropout(proj_drop)
45
+
46
+ self.sr_ratio = sr_ratio
47
+ if sr_ratio > 1:
48
+ self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
49
+ self.norm = nn.LayerNorm(dim)
50
+
51
+ def forward(self, x, H, W):
52
+ B, N, C = x.shape
53
+ q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
54
+
55
+ if self.sr_ratio > 1:
56
+ x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
57
+ x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
58
+ x_ = self.norm(x_)
59
+ kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
60
+ else:
61
+ kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
62
+ k, v = kv[0], kv[1]
63
+
64
+ attn = (q @ k.transpose(-2, -1)) * self.scale
65
+ attn = attn.softmax(dim=-1)
66
+ attn = self.attn_drop(attn)
67
+
68
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
69
+ x = self.proj(x)
70
+ x = self.proj_drop(x)
71
+ return x
72
+
73
+
74
+ class Block(nn.Module):
75
+ def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
76
+ drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1):
77
+ super().__init__()
78
+ self.norm1 = norm_layer(dim)
79
+ self.attn = Attention(
80
+ dim,
81
+ num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
82
+ attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
83
+ # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
84
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
85
+ self.norm2 = norm_layer(dim)
86
+ mlp_hidden_dim = int(dim * mlp_ratio)
87
+ self.mlp = MLPLayer(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
88
+
89
+ def forward(self, x, H, W):
90
+ x = x + self.drop_path(self.attn(self.norm1(x), H, W))
91
+ x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
92
+ return x
93
+
94
+
95
+ class OverlapPatchEmbed(nn.Module):
96
+ """ Image to Patch Embedding
97
+ """
98
+
99
+ def __init__(self, img_size=224, patch_size=7, stride=4, in_channels=3, embed_dim=768):
100
+ super().__init__()
101
+ img_size = to_2tuple(img_size)
102
+ patch_size = to_2tuple(patch_size)
103
+
104
+ self.img_size = img_size
105
+ self.patch_size = patch_size
106
+ self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
107
+ self.num_patches = self.H * self.W
108
+ self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=stride,
109
+ padding=(patch_size[0] // 2, patch_size[1] // 2))
110
+ self.norm = nn.LayerNorm(embed_dim)
111
+
112
+ def forward(self, x):
113
+ x = self.proj(x)
114
+ _, _, H, W = x.shape
115
+ x = x.flatten(2).transpose(1, 2)
116
+ x = self.norm(x)
117
+ return x, H, W
118
+
modules/utils.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+
3
+
4
+ def build_act_layer(act_layer):
5
+ if act_layer == 'ReLU':
6
+ return nn.ReLU(inplace=True)
7
+ elif act_layer == 'SiLU':
8
+ return nn.SiLU(inplace=True)
9
+ elif act_layer == 'GELU':
10
+ return nn.GELU()
11
+
12
+ raise NotImplementedError(f'build_act_layer does not support {act_layer}')
13
+
14
+
15
+ def build_norm_layer(dim,
16
+ norm_layer,
17
+ in_format='channels_last',
18
+ out_format='channels_last',
19
+ eps=1e-6):
20
+ layers = []
21
+ if norm_layer == 'BN':
22
+ if in_format == 'channels_last':
23
+ layers.append(to_channels_first())
24
+ layers.append(nn.BatchNorm2d(dim))
25
+ if out_format == 'channels_last':
26
+ layers.append(to_channels_last())
27
+ elif norm_layer == 'LN':
28
+ if in_format == 'channels_first':
29
+ layers.append(to_channels_last())
30
+ layers.append(nn.LayerNorm(dim, eps=eps))
31
+ if out_format == 'channels_first':
32
+ layers.append(to_channels_first())
33
+ else:
34
+ raise NotImplementedError(
35
+ f'build_norm_layer does not support {norm_layer}')
36
+ return nn.Sequential(*layers)
37
+
38
+
39
+ class to_channels_first(nn.Module):
40
+
41
+ def __init__(self):
42
+ super().__init__()
43
+
44
+ def forward(self, x):
45
+ return x.permute(0, 3, 1, 2)
46
+
47
+
48
+ class to_channels_last(nn.Module):
49
+
50
+ def __init__(self):
51
+ super().__init__()
52
+
53
+ def forward(self, x):
54
+ return x.permute(0, 2, 3, 1)
preproc.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image, ImageEnhance
2
+ import random
3
+ import numpy as np
4
+ import random
5
+
6
+
7
+ def preproc(image, label, preproc_methods=['flip']):
8
+ if 'flip' in preproc_methods:
9
+ image, label = cv_random_flip(image, label)
10
+ if 'crop' in preproc_methods:
11
+ image, label = random_crop(image, label)
12
+ if 'rotate' in preproc_methods:
13
+ image, label = random_rotate(image, label)
14
+ if 'enhance' in preproc_methods:
15
+ image = color_enhance(image)
16
+ if 'pepper' in preproc_methods:
17
+ label = random_pepper(label)
18
+ return image, label
19
+
20
+
21
+ def cv_random_flip(img, label):
22
+ if random.random() > 0.5:
23
+ img = img.transpose(Image.FLIP_LEFT_RIGHT)
24
+ label = label.transpose(Image.FLIP_LEFT_RIGHT)
25
+ return img, label
26
+
27
+
28
+ def random_crop(image, label):
29
+ border = 30
30
+ image_width = image.size[0]
31
+ image_height = image.size[1]
32
+ border = int(min(image_width, image_height) * 0.1)
33
+ crop_win_width = np.random.randint(image_width - border, image_width)
34
+ crop_win_height = np.random.randint(image_height - border, image_height)
35
+ random_region = (
36
+ (image_width - crop_win_width) >> 1, (image_height - crop_win_height) >> 1, (image_width + crop_win_width) >> 1,
37
+ (image_height + crop_win_height) >> 1)
38
+ return image.crop(random_region), label.crop(random_region)
39
+
40
+
41
+ def random_rotate(image, label, angle=15):
42
+ mode = Image.BICUBIC
43
+ if random.random() > 0.8:
44
+ random_angle = np.random.randint(-angle, angle)
45
+ image = image.rotate(random_angle, mode)
46
+ label = label.rotate(random_angle, mode)
47
+ return image, label
48
+
49
+
50
+ def color_enhance(image):
51
+ bright_intensity = random.randint(5, 15) / 10.0
52
+ image = ImageEnhance.Brightness(image).enhance(bright_intensity)
53
+ contrast_intensity = random.randint(5, 15) / 10.0
54
+ image = ImageEnhance.Contrast(image).enhance(contrast_intensity)
55
+ color_intensity = random.randint(0, 20) / 10.0
56
+ image = ImageEnhance.Color(image).enhance(color_intensity)
57
+ sharp_intensity = random.randint(0, 30) / 10.0
58
+ image = ImageEnhance.Sharpness(image).enhance(sharp_intensity)
59
+ return image
60
+
61
+
62
+ def random_gaussian(image, mean=0.1, sigma=0.35):
63
+ def gaussianNoisy(im, mean=mean, sigma=sigma):
64
+ for _i in range(len(im)):
65
+ im[_i] += random.gauss(mean, sigma)
66
+ return im
67
+
68
+ img = np.asarray(image)
69
+ width, height = img.shape
70
+ img = gaussianNoisy(img[:].flatten(), mean, sigma)
71
+ img = img.reshape([width, height])
72
+ return Image.fromarray(np.uint8(img))
73
+
74
+
75
+ def random_pepper(img, N=0.0015):
76
+ img = np.array(img)
77
+ noiseNum = int(N * img.shape[0] * img.shape[1])
78
+ for i in range(noiseNum):
79
+ randX = random.randint(0, img.shape[0] - 1)
80
+ randY = random.randint(0, img.shape[1] - 1)
81
+ if random.randint(0, 1) == 0:
82
+ img[randX, randY] = 0
83
+ else:
84
+ img[randX, randY] = 255
85
+ return Image.fromarray(img)
refinement/refiner.py ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from collections import OrderedDict
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+ from torchvision.models import vgg16, vgg16_bn
8
+ from torchvision.models import resnet50
9
+
10
+ from config import Config
11
+ from dataset import class_labels_TR_sorted
12
+ from models.backbones.build_backbone import build_backbone
13
+ from models.modules.decoder_blocks import BasicDecBlk
14
+ from models.modules.lateral_blocks import BasicLatBlk
15
+ from models.modules.ing import *
16
+ from models.refinement.stem_layer import StemLayer
17
+
18
+
19
+ class RefinerPVTInChannels4(nn.Module):
20
+ def __init__(self, in_channels=3+1):
21
+ super(RefinerPVTInChannels4, self).__init__()
22
+ self.config = Config()
23
+ self.epoch = 1
24
+ self.bb = build_backbone(self.config.bb, params_settings='in_channels=4')
25
+
26
+ lateral_channels_in_collection = {
27
+ 'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
28
+ 'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
29
+ 'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
30
+ }
31
+ channels = lateral_channels_in_collection[self.config.bb]
32
+ self.squeeze_module = BasicDecBlk(channels[0], channels[0])
33
+
34
+ self.decoder = Decoder(channels)
35
+
36
+ if 0:
37
+ for key, value in self.named_parameters():
38
+ if 'bb.' in key:
39
+ value.requires_grad = False
40
+
41
+ def forward(self, x):
42
+ if isinstance(x, list):
43
+ x = torch.cat(x, dim=1)
44
+ ########## Encoder ##########
45
+ if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
46
+ x1 = self.bb.conv1(x)
47
+ x2 = self.bb.conv2(x1)
48
+ x3 = self.bb.conv3(x2)
49
+ x4 = self.bb.conv4(x3)
50
+ else:
51
+ x1, x2, x3, x4 = self.bb(x)
52
+
53
+ x4 = self.squeeze_module(x4)
54
+
55
+ ########## Decoder ##########
56
+
57
+ features = [x, x1, x2, x3, x4]
58
+ scaled_preds = self.decoder(features)
59
+
60
+ return scaled_preds
61
+
62
+
63
+ class Refiner(nn.Module):
64
+ def __init__(self, in_channels=3+1):
65
+ super(Refiner, self).__init__()
66
+ self.config = Config()
67
+ self.epoch = 1
68
+ self.stem_layer = StemLayer(in_channels=in_channels, inter_channels=48, out_channels=3)
69
+ self.bb = build_backbone(self.config.bb)
70
+
71
+ lateral_channels_in_collection = {
72
+ 'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
73
+ 'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
74
+ 'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
75
+ }
76
+ channels = lateral_channels_in_collection[self.config.bb]
77
+ self.squeeze_module = BasicDecBlk(channels[0], channels[0])
78
+
79
+ self.decoder = Decoder(channels)
80
+
81
+ if 0:
82
+ for key, value in self.named_parameters():
83
+ if 'bb.' in key:
84
+ value.requires_grad = False
85
+
86
+ def forward(self, x):
87
+ if isinstance(x, list):
88
+ x = torch.cat(x, dim=1)
89
+ x = self.stem_layer(x)
90
+ ########## Encoder ##########
91
+ if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
92
+ x1 = self.bb.conv1(x)
93
+ x2 = self.bb.conv2(x1)
94
+ x3 = self.bb.conv3(x2)
95
+ x4 = self.bb.conv4(x3)
96
+ else:
97
+ x1, x2, x3, x4 = self.bb(x)
98
+
99
+ x4 = self.squeeze_module(x4)
100
+
101
+ ########## Decoder ##########
102
+
103
+ features = [x, x1, x2, x3, x4]
104
+ scaled_preds = self.decoder(features)
105
+
106
+ return scaled_preds
107
+
108
+
109
+ class Decoder(nn.Module):
110
+ def __init__(self, channels):
111
+ super(Decoder, self).__init__()
112
+ self.config = Config()
113
+ DecoderBlock = eval('BasicDecBlk')
114
+ LateralBlock = eval('BasicLatBlk')
115
+
116
+ self.decoder_block4 = DecoderBlock(channels[0], channels[1])
117
+ self.decoder_block3 = DecoderBlock(channels[1], channels[2])
118
+ self.decoder_block2 = DecoderBlock(channels[2], channels[3])
119
+ self.decoder_block1 = DecoderBlock(channels[3], channels[3]//2)
120
+
121
+ self.lateral_block4 = LateralBlock(channels[1], channels[1])
122
+ self.lateral_block3 = LateralBlock(channels[2], channels[2])
123
+ self.lateral_block2 = LateralBlock(channels[3], channels[3])
124
+
125
+ if self.config.ms_supervision:
126
+ self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0)
127
+ self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0)
128
+ self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0)
129
+ self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2, 1, 1, 1, 0))
130
+
131
+ def forward(self, features):
132
+ x, x1, x2, x3, x4 = features
133
+ outs = []
134
+ p4 = self.decoder_block4(x4)
135
+ _p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
136
+ _p3 = _p4 + self.lateral_block4(x3)
137
+
138
+ p3 = self.decoder_block3(_p3)
139
+ _p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
140
+ _p2 = _p3 + self.lateral_block3(x2)
141
+
142
+ p2 = self.decoder_block2(_p2)
143
+ _p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
144
+ _p1 = _p2 + self.lateral_block2(x1)
145
+
146
+ _p1 = self.decoder_block1(_p1)
147
+ _p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
148
+ p1_out = self.conv_out1(_p1)
149
+
150
+ if self.config.ms_supervision:
151
+ outs.append(self.conv_ms_spvn_4(p4))
152
+ outs.append(self.conv_ms_spvn_3(p3))
153
+ outs.append(self.conv_ms_spvn_2(p2))
154
+ outs.append(p1_out)
155
+ return outs
156
+
157
+
158
+ class RefUNet(nn.Module):
159
+ # Refinement
160
+ def __init__(self, in_channels=3+1):
161
+ super(RefUNet, self).__init__()
162
+ self.encoder_1 = nn.Sequential(
163
+ nn.Conv2d(in_channels, 64, 3, 1, 1),
164
+ nn.Conv2d(64, 64, 3, 1, 1),
165
+ nn.BatchNorm2d(64),
166
+ nn.ReLU(inplace=True)
167
+ )
168
+
169
+ self.encoder_2 = nn.Sequential(
170
+ nn.MaxPool2d(2, 2, ceil_mode=True),
171
+ nn.Conv2d(64, 64, 3, 1, 1),
172
+ nn.BatchNorm2d(64),
173
+ nn.ReLU(inplace=True)
174
+ )
175
+
176
+ self.encoder_3 = nn.Sequential(
177
+ nn.MaxPool2d(2, 2, ceil_mode=True),
178
+ nn.Conv2d(64, 64, 3, 1, 1),
179
+ nn.BatchNorm2d(64),
180
+ nn.ReLU(inplace=True)
181
+ )
182
+
183
+ self.encoder_4 = nn.Sequential(
184
+ nn.MaxPool2d(2, 2, ceil_mode=True),
185
+ nn.Conv2d(64, 64, 3, 1, 1),
186
+ nn.BatchNorm2d(64),
187
+ nn.ReLU(inplace=True)
188
+ )
189
+
190
+ self.pool4 = nn.MaxPool2d(2, 2, ceil_mode=True)
191
+ #####
192
+ self.decoder_5 = nn.Sequential(
193
+ nn.Conv2d(64, 64, 3, 1, 1),
194
+ nn.BatchNorm2d(64),
195
+ nn.ReLU(inplace=True)
196
+ )
197
+ #####
198
+ self.decoder_4 = nn.Sequential(
199
+ nn.Conv2d(128, 64, 3, 1, 1),
200
+ nn.BatchNorm2d(64),
201
+ nn.ReLU(inplace=True)
202
+ )
203
+
204
+ self.decoder_3 = nn.Sequential(
205
+ nn.Conv2d(128, 64, 3, 1, 1),
206
+ nn.BatchNorm2d(64),
207
+ nn.ReLU(inplace=True)
208
+ )
209
+
210
+ self.decoder_2 = nn.Sequential(
211
+ nn.Conv2d(128, 64, 3, 1, 1),
212
+ nn.BatchNorm2d(64),
213
+ nn.ReLU(inplace=True)
214
+ )
215
+
216
+ self.decoder_1 = nn.Sequential(
217
+ nn.Conv2d(128, 64, 3, 1, 1),
218
+ nn.BatchNorm2d(64),
219
+ nn.ReLU(inplace=True)
220
+ )
221
+
222
+ self.conv_d0 = nn.Conv2d(64, 1, 3, 1, 1)
223
+
224
+ self.upscore2 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
225
+
226
+ def forward(self, x):
227
+ outs = []
228
+ if isinstance(x, list):
229
+ x = torch.cat(x, dim=1)
230
+ hx = x
231
+
232
+ hx1 = self.encoder_1(hx)
233
+ hx2 = self.encoder_2(hx1)
234
+ hx3 = self.encoder_3(hx2)
235
+ hx4 = self.encoder_4(hx3)
236
+
237
+ hx = self.decoder_5(self.pool4(hx4))
238
+ hx = torch.cat((self.upscore2(hx), hx4), 1)
239
+
240
+ d4 = self.decoder_4(hx)
241
+ hx = torch.cat((self.upscore2(d4), hx3), 1)
242
+
243
+ d3 = self.decoder_3(hx)
244
+ hx = torch.cat((self.upscore2(d3), hx2), 1)
245
+
246
+ d2 = self.decoder_2(hx)
247
+ hx = torch.cat((self.upscore2(d2), hx1), 1)
248
+
249
+ d1 = self.decoder_1(hx)
250
+
251
+ x = self.conv_d0(d1)
252
+ outs.append(x)
253
+ return outs
refinement/stem_layer.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ from models.modules.utils import build_act_layer, build_norm_layer
3
+
4
+
5
+ class StemLayer(nn.Module):
6
+ r""" Stem layer of InternImage
7
+ Args:
8
+ in_channels (int): number of input channels
9
+ out_channels (int): number of output channels
10
+ act_layer (str): activation layer
11
+ norm_layer (str): normalization layer
12
+ """
13
+
14
+ def __init__(self,
15
+ in_channels=3+1,
16
+ inter_channels=48,
17
+ out_channels=96,
18
+ act_layer='GELU',
19
+ norm_layer='BN'):
20
+ super().__init__()
21
+ self.conv1 = nn.Conv2d(in_channels,
22
+ inter_channels,
23
+ kernel_size=3,
24
+ stride=1,
25
+ padding=1)
26
+ self.norm1 = build_norm_layer(
27
+ inter_channels, norm_layer, 'channels_first', 'channels_first'
28
+ )
29
+ self.act = build_act_layer(act_layer)
30
+ self.conv2 = nn.Conv2d(inter_channels,
31
+ out_channels,
32
+ kernel_size=3,
33
+ stride=1,
34
+ padding=1)
35
+ self.norm2 = build_norm_layer(
36
+ out_channels, norm_layer, 'channels_first', 'channels_first'
37
+ )
38
+
39
+ def forward(self, x):
40
+ x = self.conv1(x)
41
+ x = self.norm1(x)
42
+ x = self.act(x)
43
+ x = self.conv2(x)
44
+ x = self.norm2(x)
45
+ return x
requirements.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ --extra-index-url https://download.pytorch.org/whl/cu118
2
+ torch==2.0.1
3
+ --extra-index-url https://download.pytorch.org/whl/cu118
4
+ torchvision==0.15.2
5
+ opencv-python
6
+ tqdm
7
+ timm
8
+ prettytable
9
+ scipy
10
+ scikit-image
11
+ kornia