Spaces:
Sleeping
Sleeping
File size: 9,531 Bytes
d8d14f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import unittest
from unittest.mock import patch
from swarms import create_agents_from_yaml
import os
class TestCreateAgentsFromYaml(unittest.TestCase):
def setUp(self):
# Mock the environment variable for API key
os.environ["OPENAI_API_KEY"] = "fake-api-key"
# Mock agent configuration YAML content
self.valid_yaml_content = """
agents:
- agent_name: "Financial-Analysis-Agent"
model:
openai_api_key: "fake-api-key"
model_name: "gpt-4o-mini"
temperature: 0.1
max_tokens: 2000
system_prompt: "financial_agent_sys_prompt"
max_loops: 1
autosave: true
dashboard: false
verbose: true
dynamic_temperature_enabled: true
saved_state_path: "finance_agent.json"
user_name: "swarms_corp"
retry_attempts: 1
context_length: 200000
return_step_meta: false
output_type: "str"
task: "How can I establish a ROTH IRA to buy stocks and get a tax break?"
- agent_name: "Stock-Analysis-Agent"
model:
openai_api_key: "fake-api-key"
model_name: "gpt-4o-mini"
temperature: 0.2
max_tokens: 1500
system_prompt: "stock_agent_sys_prompt"
max_loops: 2
autosave: true
dashboard: false
verbose: true
dynamic_temperature_enabled: false
saved_state_path: "stock_agent.json"
user_name: "stock_user"
retry_attempts: 3
context_length: 150000
return_step_meta: true
output_type: "json"
task: "What is the best strategy for long-term stock investment?"
"""
@patch(
"builtins.open",
new_callable=unittest.mock.mock_open,
read_data="",
)
@patch("yaml.safe_load")
def test_create_agents_return_agents(
self, mock_safe_load, mock_open
):
# Mock YAML content parsing
mock_safe_load.return_value = {
"agents": [
{
"agent_name": "Financial-Analysis-Agent",
"model": {
"openai_api_key": "fake-api-key",
"model_name": "gpt-4o-mini",
"temperature": 0.1,
"max_tokens": 2000,
},
"system_prompt": "financial_agent_sys_prompt",
"max_loops": 1,
"autosave": True,
"dashboard": False,
"verbose": True,
"dynamic_temperature_enabled": True,
"saved_state_path": "finance_agent.json",
"user_name": "swarms_corp",
"retry_attempts": 1,
"context_length": 200000,
"return_step_meta": False,
"output_type": "str",
"task": "How can I establish a ROTH IRA to buy stocks and get a tax break?",
}
]
}
# Test if agents are returned correctly
agents = create_agents_from_yaml(
"fake_yaml_path.yaml", return_type="agents"
)
self.assertEqual(len(agents), 1)
self.assertEqual(
agents[0].agent_name, "Financial-Analysis-Agent"
)
@patch(
"builtins.open",
new_callable=unittest.mock.mock_open,
read_data="",
)
@patch("yaml.safe_load")
@patch(
"swarms.Agent.run", return_value="Task completed successfully"
)
def test_create_agents_return_tasks(
self, mock_agent_run, mock_safe_load, mock_open
):
# Mock YAML content parsing
mock_safe_load.return_value = {
"agents": [
{
"agent_name": "Financial-Analysis-Agent",
"model": {
"openai_api_key": "fake-api-key",
"model_name": "gpt-4o-mini",
"temperature": 0.1,
"max_tokens": 2000,
},
"system_prompt": "financial_agent_sys_prompt",
"max_loops": 1,
"autosave": True,
"dashboard": False,
"verbose": True,
"dynamic_temperature_enabled": True,
"saved_state_path": "finance_agent.json",
"user_name": "swarms_corp",
"retry_attempts": 1,
"context_length": 200000,
"return_step_meta": False,
"output_type": "str",
"task": "How can I establish a ROTH IRA to buy stocks and get a tax break?",
}
]
}
# Test if tasks are executed and results are returned
task_results = create_agents_from_yaml(
"fake_yaml_path.yaml", return_type="tasks"
)
self.assertEqual(len(task_results), 1)
self.assertEqual(
task_results[0]["agent_name"], "Financial-Analysis-Agent"
)
self.assertIsNotNone(task_results[0]["output"])
@patch(
"builtins.open",
new_callable=unittest.mock.mock_open,
read_data="",
)
@patch("yaml.safe_load")
def test_create_agents_return_both(
self, mock_safe_load, mock_open
):
# Mock YAML content parsing
mock_safe_load.return_value = {
"agents": [
{
"agent_name": "Financial-Analysis-Agent",
"model": {
"openai_api_key": "fake-api-key",
"model_name": "gpt-4o-mini",
"temperature": 0.1,
"max_tokens": 2000,
},
"system_prompt": "financial_agent_sys_prompt",
"max_loops": 1,
"autosave": True,
"dashboard": False,
"verbose": True,
"dynamic_temperature_enabled": True,
"saved_state_path": "finance_agent.json",
"user_name": "swarms_corp",
"retry_attempts": 1,
"context_length": 200000,
"return_step_meta": False,
"output_type": "str",
"task": "How can I establish a ROTH IRA to buy stocks and get a tax break?",
}
]
}
# Test if both agents and tasks are returned
agents, task_results = create_agents_from_yaml(
"fake_yaml_path.yaml", return_type="both"
)
self.assertEqual(len(agents), 1)
self.assertEqual(len(task_results), 1)
self.assertEqual(
agents[0].agent_name, "Financial-Analysis-Agent"
)
self.assertIsNotNone(task_results[0]["output"])
@patch(
"builtins.open",
new_callable=unittest.mock.mock_open,
read_data="",
)
@patch("yaml.safe_load")
def test_missing_agents_in_yaml(self, mock_safe_load, mock_open):
# Mock YAML content with missing "agents" key
mock_safe_load.return_value = {}
# Test if the function raises an error for missing "agents" key
with self.assertRaises(ValueError) as context:
create_agents_from_yaml(
"fake_yaml_path.yaml", return_type="agents"
)
self.assertTrue(
"The YAML configuration does not contain 'agents'."
in str(context.exception)
)
@patch(
"builtins.open",
new_callable=unittest.mock.mock_open,
read_data="",
)
@patch("yaml.safe_load")
def test_invalid_return_type(self, mock_safe_load, mock_open):
# Mock YAML content parsing
mock_safe_load.return_value = {
"agents": [
{
"agent_name": "Financial-Analysis-Agent",
"model": {
"openai_api_key": "fake-api-key",
"model_name": "gpt-4o-mini",
"temperature": 0.1,
"max_tokens": 2000,
},
"system_prompt": "financial_agent_sys_prompt",
"max_loops": 1,
"autosave": True,
"dashboard": False,
"verbose": True,
"dynamic_temperature_enabled": True,
"saved_state_path": "finance_agent.json",
"user_name": "swarms_corp",
"retry_attempts": 1,
"context_length": 200000,
"return_step_meta": False,
"output_type": "str",
"task": "How can I establish a ROTH IRA to buy stocks and get a tax break?",
}
]
}
# Test if an error is raised for invalid return_type
with self.assertRaises(ValueError) as context:
create_agents_from_yaml(
"fake_yaml_path.yaml", return_type="invalid_type"
)
self.assertTrue(
"Invalid return_type" in str(context.exception)
)
if __name__ == "__main__":
unittest.main()
|