File size: 9,531 Bytes
d8d14f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import unittest
from unittest.mock import patch
from swarms import create_agents_from_yaml
import os


class TestCreateAgentsFromYaml(unittest.TestCase):

    def setUp(self):
        # Mock the environment variable for API key
        os.environ["OPENAI_API_KEY"] = "fake-api-key"

        # Mock agent configuration YAML content
        self.valid_yaml_content = """
        agents:
          - agent_name: "Financial-Analysis-Agent"
            model:
              openai_api_key: "fake-api-key"
              model_name: "gpt-4o-mini"
              temperature: 0.1
              max_tokens: 2000
            system_prompt: "financial_agent_sys_prompt"
            max_loops: 1
            autosave: true
            dashboard: false
            verbose: true
            dynamic_temperature_enabled: true
            saved_state_path: "finance_agent.json"
            user_name: "swarms_corp"
            retry_attempts: 1
            context_length: 200000
            return_step_meta: false
            output_type: "str"
            task: "How can I establish a ROTH IRA to buy stocks and get a tax break?"

          - agent_name: "Stock-Analysis-Agent"
            model:
              openai_api_key: "fake-api-key"
              model_name: "gpt-4o-mini"
              temperature: 0.2
              max_tokens: 1500
            system_prompt: "stock_agent_sys_prompt"
            max_loops: 2
            autosave: true
            dashboard: false
            verbose: true
            dynamic_temperature_enabled: false
            saved_state_path: "stock_agent.json"
            user_name: "stock_user"
            retry_attempts: 3
            context_length: 150000
            return_step_meta: true
            output_type: "json"
            task: "What is the best strategy for long-term stock investment?"
        """

    @patch(
        "builtins.open",
        new_callable=unittest.mock.mock_open,
        read_data="",
    )
    @patch("yaml.safe_load")
    def test_create_agents_return_agents(
        self, mock_safe_load, mock_open
    ):
        # Mock YAML content parsing
        mock_safe_load.return_value = {
            "agents": [
                {
                    "agent_name": "Financial-Analysis-Agent",
                    "model": {
                        "openai_api_key": "fake-api-key",
                        "model_name": "gpt-4o-mini",
                        "temperature": 0.1,
                        "max_tokens": 2000,
                    },
                    "system_prompt": "financial_agent_sys_prompt",
                    "max_loops": 1,
                    "autosave": True,
                    "dashboard": False,
                    "verbose": True,
                    "dynamic_temperature_enabled": True,
                    "saved_state_path": "finance_agent.json",
                    "user_name": "swarms_corp",
                    "retry_attempts": 1,
                    "context_length": 200000,
                    "return_step_meta": False,
                    "output_type": "str",
                    "task": "How can I establish a ROTH IRA to buy stocks and get a tax break?",
                }
            ]
        }

        # Test if agents are returned correctly
        agents = create_agents_from_yaml(
            "fake_yaml_path.yaml", return_type="agents"
        )
        self.assertEqual(len(agents), 1)
        self.assertEqual(
            agents[0].agent_name, "Financial-Analysis-Agent"
        )

    @patch(
        "builtins.open",
        new_callable=unittest.mock.mock_open,
        read_data="",
    )
    @patch("yaml.safe_load")
    @patch(
        "swarms.Agent.run", return_value="Task completed successfully"
    )
    def test_create_agents_return_tasks(
        self, mock_agent_run, mock_safe_load, mock_open
    ):
        # Mock YAML content parsing
        mock_safe_load.return_value = {
            "agents": [
                {
                    "agent_name": "Financial-Analysis-Agent",
                    "model": {
                        "openai_api_key": "fake-api-key",
                        "model_name": "gpt-4o-mini",
                        "temperature": 0.1,
                        "max_tokens": 2000,
                    },
                    "system_prompt": "financial_agent_sys_prompt",
                    "max_loops": 1,
                    "autosave": True,
                    "dashboard": False,
                    "verbose": True,
                    "dynamic_temperature_enabled": True,
                    "saved_state_path": "finance_agent.json",
                    "user_name": "swarms_corp",
                    "retry_attempts": 1,
                    "context_length": 200000,
                    "return_step_meta": False,
                    "output_type": "str",
                    "task": "How can I establish a ROTH IRA to buy stocks and get a tax break?",
                }
            ]
        }

        # Test if tasks are executed and results are returned
        task_results = create_agents_from_yaml(
            "fake_yaml_path.yaml", return_type="tasks"
        )
        self.assertEqual(len(task_results), 1)
        self.assertEqual(
            task_results[0]["agent_name"], "Financial-Analysis-Agent"
        )
        self.assertIsNotNone(task_results[0]["output"])

    @patch(
        "builtins.open",
        new_callable=unittest.mock.mock_open,
        read_data="",
    )
    @patch("yaml.safe_load")
    def test_create_agents_return_both(
        self, mock_safe_load, mock_open
    ):
        # Mock YAML content parsing
        mock_safe_load.return_value = {
            "agents": [
                {
                    "agent_name": "Financial-Analysis-Agent",
                    "model": {
                        "openai_api_key": "fake-api-key",
                        "model_name": "gpt-4o-mini",
                        "temperature": 0.1,
                        "max_tokens": 2000,
                    },
                    "system_prompt": "financial_agent_sys_prompt",
                    "max_loops": 1,
                    "autosave": True,
                    "dashboard": False,
                    "verbose": True,
                    "dynamic_temperature_enabled": True,
                    "saved_state_path": "finance_agent.json",
                    "user_name": "swarms_corp",
                    "retry_attempts": 1,
                    "context_length": 200000,
                    "return_step_meta": False,
                    "output_type": "str",
                    "task": "How can I establish a ROTH IRA to buy stocks and get a tax break?",
                }
            ]
        }

        # Test if both agents and tasks are returned
        agents, task_results = create_agents_from_yaml(
            "fake_yaml_path.yaml", return_type="both"
        )
        self.assertEqual(len(agents), 1)
        self.assertEqual(len(task_results), 1)
        self.assertEqual(
            agents[0].agent_name, "Financial-Analysis-Agent"
        )
        self.assertIsNotNone(task_results[0]["output"])

    @patch(
        "builtins.open",
        new_callable=unittest.mock.mock_open,
        read_data="",
    )
    @patch("yaml.safe_load")
    def test_missing_agents_in_yaml(self, mock_safe_load, mock_open):
        # Mock YAML content with missing "agents" key
        mock_safe_load.return_value = {}

        # Test if the function raises an error for missing "agents" key
        with self.assertRaises(ValueError) as context:
            create_agents_from_yaml(
                "fake_yaml_path.yaml", return_type="agents"
            )
        self.assertTrue(
            "The YAML configuration does not contain 'agents'."
            in str(context.exception)
        )

    @patch(
        "builtins.open",
        new_callable=unittest.mock.mock_open,
        read_data="",
    )
    @patch("yaml.safe_load")
    def test_invalid_return_type(self, mock_safe_load, mock_open):
        # Mock YAML content parsing
        mock_safe_load.return_value = {
            "agents": [
                {
                    "agent_name": "Financial-Analysis-Agent",
                    "model": {
                        "openai_api_key": "fake-api-key",
                        "model_name": "gpt-4o-mini",
                        "temperature": 0.1,
                        "max_tokens": 2000,
                    },
                    "system_prompt": "financial_agent_sys_prompt",
                    "max_loops": 1,
                    "autosave": True,
                    "dashboard": False,
                    "verbose": True,
                    "dynamic_temperature_enabled": True,
                    "saved_state_path": "finance_agent.json",
                    "user_name": "swarms_corp",
                    "retry_attempts": 1,
                    "context_length": 200000,
                    "return_step_meta": False,
                    "output_type": "str",
                    "task": "How can I establish a ROTH IRA to buy stocks and get a tax break?",
                }
            ]
        }

        # Test if an error is raised for invalid return_type
        with self.assertRaises(ValueError) as context:
            create_agents_from_yaml(
                "fake_yaml_path.yaml", return_type="invalid_type"
            )
        self.assertTrue(
            "Invalid return_type" in str(context.exception)
        )


if __name__ == "__main__":
    unittest.main()