# from https://gist.github.com/jachiam/8a5c0b607e38fcc585168b90c686eb05
# Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint.
# *Only* converts the UNet, VAE, and Text Encoder.
# Does not convert optimizer state or any other thing.
# Written by jachiam
import argparse
import os.path as osp

import torch


# =================#
# UNet Conversion #
# =================#

unet_conversion_map = [
    # (stable-diffusion, HF Diffusers)
    ("time_embed.0.weight", "time_embedding.linear_1.weight"),
    ("time_embed.0.bias", "time_embedding.linear_1.bias"),
    ("time_embed.2.weight", "time_embedding.linear_2.weight"),
    ("time_embed.2.bias", "time_embedding.linear_2.bias"),
    ("input_blocks.0.0.weight", "conv_in.weight"),
    ("input_blocks.0.0.bias", "conv_in.bias"),
    ("out.0.weight", "conv_norm_out.weight"),
    ("out.0.bias", "conv_norm_out.bias"),
    ("out.2.weight", "conv_out.weight"),
    ("out.2.bias", "conv_out.bias"),
]

unet_conversion_map_resnet = [
    # (stable-diffusion, HF Diffusers)
    ("in_layers.0", "norm1"),
    ("in_layers.2", "conv1"),
    ("out_layers.0", "norm2"),
    ("out_layers.3", "conv2"),
    ("emb_layers.1", "time_emb_proj"),
    ("skip_connection", "conv_shortcut"),
]

unet_conversion_map_layer = []
# hardcoded number of downblocks and resnets/attentions...
# would need smarter logic for other networks.
for i in range(4):
    # loop over downblocks/upblocks

    for j in range(2):
        # loop over resnets/attentions for downblocks
        hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
        sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
        unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))

        if i < 3:
            # no attention layers in down_blocks.3
            hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
            sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
            unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))

    for j in range(3):
        # loop over resnets/attentions for upblocks
        hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
        sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
        unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))

        if i > 0:
            # no attention layers in up_blocks.0
            hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
            sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
            unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))

    if i < 3:
        # no downsample in down_blocks.3
        hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
        sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
        unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))

        # no upsample in up_blocks.3
        hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
        sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}."
        unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))

hf_mid_atn_prefix = "mid_block.attentions.0."
sd_mid_atn_prefix = "middle_block.1."
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))

for j in range(2):
    hf_mid_res_prefix = f"mid_block.resnets.{j}."
    sd_mid_res_prefix = f"middle_block.{2*j}."
    unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))


def convert_unet_state_dict(unet_state_dict):
    # buyer beware: this is a *brittle* function,
    # and correct output requires that all of these pieces interact in
    # the exact order in which I have arranged them.
    mapping = {k: k for k in unet_state_dict.keys()}
    for sd_name, hf_name in unet_conversion_map:
        mapping[hf_name] = sd_name
    for k, v in mapping.items():
        if "resnets" in k:
            for sd_part, hf_part in unet_conversion_map_resnet:
                v = v.replace(hf_part, sd_part)
            mapping[k] = v
    for k, v in mapping.items():
        for sd_part, hf_part in unet_conversion_map_layer:
            v = v.replace(hf_part, sd_part)
        mapping[k] = v
    new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
    return new_state_dict


# ================#
# VAE Conversion #
# ================#

vae_conversion_map = [
    # (stable-diffusion, HF Diffusers)
    ("nin_shortcut", "conv_shortcut"),
    ("norm_out", "conv_norm_out"),
    ("mid.attn_1.", "mid_block.attentions.0."),
]

for i in range(4):
    # down_blocks have two resnets
    for j in range(2):
        hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
        sd_down_prefix = f"encoder.down.{i}.block.{j}."
        vae_conversion_map.append((sd_down_prefix, hf_down_prefix))

    if i < 3:
        hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
        sd_downsample_prefix = f"down.{i}.downsample."
        vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))

        hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
        sd_upsample_prefix = f"up.{3-i}.upsample."
        vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))

    # up_blocks have three resnets
    # also, up blocks in hf are numbered in reverse from sd
    for j in range(3):
        hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
        sd_up_prefix = f"decoder.up.{3-i}.block.{j}."
        vae_conversion_map.append((sd_up_prefix, hf_up_prefix))

# this part accounts for mid blocks in both the encoder and the decoder
for i in range(2):
    hf_mid_res_prefix = f"mid_block.resnets.{i}."
    sd_mid_res_prefix = f"mid.block_{i+1}."
    vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))


vae_conversion_map_attn = [
    # (stable-diffusion, HF Diffusers)
    ("norm.", "group_norm."),
    ("q.", "query."),
    ("k.", "key."),
    ("v.", "value."),
    ("proj_out.", "proj_attn."),
]


def reshape_weight_for_sd(w):
    # convert HF linear weights to SD conv2d weights
    return w.reshape(*w.shape, 1, 1)


def convert_vae_state_dict(vae_state_dict):
    mapping = {k: k for k in vae_state_dict.keys()}
    for k, v in mapping.items():
        for sd_part, hf_part in vae_conversion_map:
            v = v.replace(hf_part, sd_part)
        mapping[k] = v
    for k, v in mapping.items():
        if "attentions" in k:
            for sd_part, hf_part in vae_conversion_map_attn:
                v = v.replace(hf_part, sd_part)
            mapping[k] = v
    new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
    weights_to_convert = ["q", "k", "v", "proj_out"]
    for k, v in new_state_dict.items():
        for weight_name in weights_to_convert:
            if f"mid.attn_1.{weight_name}.weight" in k:
                print(f"Reshaping {k} for SD format")
                new_state_dict[k] = reshape_weight_for_sd(v)
    return new_state_dict


# =========================#
# Text Encoder Conversion #
# =========================#
# pretty much a no-op


def convert_text_enc_state_dict(text_enc_dict):
    return text_enc_dict


def convert_to_ckpt(model_path, checkpoint_path, as_half):

    assert model_path is not None, "Must provide a model path!"

    assert checkpoint_path is not None, "Must provide a checkpoint path!"

    unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.bin")
    vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.bin")
    text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin")

    # Convert the UNet model
    unet_state_dict = torch.load(unet_path, map_location="cpu")
    unet_state_dict = convert_unet_state_dict(unet_state_dict)
    unet_state_dict = {
        "model.diffusion_model." + k: v for k, v in unet_state_dict.items()
    }

    # Convert the VAE model
    vae_state_dict = torch.load(vae_path, map_location="cpu")
    vae_state_dict = convert_vae_state_dict(vae_state_dict)
    vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}

    # Convert the text encoder model
    text_enc_dict = torch.load(text_enc_path, map_location="cpu")
    text_enc_dict = convert_text_enc_state_dict(text_enc_dict)
    text_enc_dict = {
        "cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()
    }

    # Put together new checkpoint
    state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
    if as_half:
        state_dict = {k: v.half() for k, v in state_dict.items()}
    state_dict = {"state_dict": state_dict}
    torch.save(state_dict, checkpoint_path)