#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: Hamza Farooq """ import spacy from spacy.lang.en.stop_words import STOP_WORDS from string import punctuation from collections import Counter from heapq import nlargest import os nlp = spacy.load("en_core_web_sm") from spacy import displacy import streamlit as st import matplotlib.pyplot as plt from wordcloud import WordCloud from matplotlib import pyplot as plt import nltk nltk.download('stopwords') import os import streamlit as st import time import torch import transformers from transformers import BartTokenizer, BartForConditionalGeneration tr = BartTokenizer.from_pretrained('facebook/bart-large-cnn') mdl = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn') torch_device = 'gpu' def main(): # Settings st.set_page_config(layout="wide", page_title='New York Hotels') def bart_summarize(text, num_beams=20, length_penalty=2, max_length=2048, min_length=56, no_repeat_ngram_size=2): text = text.replace('\n','') text_input_ids = tr.batch_encode_plus([text], return_tensors='pt', max_length=1024)['input_ids'].to(torch_device) summary_ids = mdl.generate(text_input_ids, num_beams=int(num_beams), length_penalty=float(length_penalty), max_length=int(max_length), min_length=int(min_length), no_repeat_ngram_size=int(no_repeat_ngram_size)) summary_txt = tr.decode(summary_ids.squeeze(), skip_special_tokens=True) return summary_txt # def gen_dict_extract(var, key): # if isinstance(var, dict): # for k, v in var.items(): # if k == key: # yield v # if isinstance(v, (dict, list)): # yield from gen_dict_extract(v, key) # elif isinstance(var, list): # for d in var: # yield from gen_dict_extract(d, key) # # cities = [*gen_dict_extract(cities, 'name')] # countries = [*gen_dict_extract(countries, 'name')] # # cities.append('New York') from nltk.corpus import stopwords stopwords = set(stopwords.words('english')) #mask = np.array(Image.open('upvote.png')) from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator import matplotlib.pyplot as plt #original_title = '
Original image
' st.title("New York Hotel Finder") stopwords=list(STOP_WORDS) stopwords.extend(['hotel','room','rooms']) from string import punctuation punctuation=punctuation+ '\n' import pandas as pd from sentence_transformers import SentenceTransformer import scipy.spatial import pickle as pkl from sentence_transformers import SentenceTransformer, util import torch #import os embedder = SentenceTransformer('all-MiniLM-L6-v2') df_all = pd.read_csv('Hotel New York Combined.csv') df_all = df_all[['hotel_name','review_body']] # # df['hotel_name'].drop_duplicates() # df_combined = df.sort_values(['hotel_name']).groupby('hotel_name', sort=False).review_body.apply(''.join).reset_index(name='all_review') import re df_combined = pd.read_csv('df_combined.csv') # df_combined['all_review'] = df_combined['all_review'].apply(lambda x: re.sub('[^a-zA-z0-9\s]','',x)) # # def lower_case(input_str): # input_str = input_str.lower() # return input_str # # df_combined['all_review']= df_combined['all_review'].apply(lambda x: lower_case(x)) df = df_combined df_sentences = df_combined.set_index("all_review") df_sentences = df_sentences["hotel_name"].to_dict() df_sentences_list = list(df_sentences.keys()) import pandas as pd from tqdm import tqdm from sentence_transformers import SentenceTransformer, util df_sentences_list = [str(d) for d in tqdm(df_sentences_list)] # corpus = df_sentences_list corpus_embeddings = embedder.encode(corpus,show_progress_bar=True) # # model = SentenceTransformer('all-MiniLM-L6-v2') # paraphrases = util.paraphrase_mining(model, corpus) #queries = ['Hotel close to Central Park', # 'Hotel with breakfast' # ] # from transformers import AutoTokenizer, AutoModel # import torch # import torch.nn.functional as F # # #Mean Pooling - Take attention mask into account for correct averaging # def mean_pooling(model_output, attention_mask): # token_embeddings = model_output[0] #First element of model_output contains all token embeddings # input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() # return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # # # # Sentences we want sentence embeddings for # sentences = corpus # # # Load model from HuggingFace Hub # tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L12-v1') # model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L12-v1') # # # Tokenize sentences # encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # # # Compute token embeddings # with torch.no_grad(): # model_output = model(**encoded_input) # # # Perform pooling # sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) # # # Normalize embeddings # sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) # # st.text("Sentence embeddings:") # st.text(sentence_embeddings) # # #corpus_embeddings = sentence_embeddings # Query sentences def plot_cloud(wordcloud): # Set figure size st.pyplot.figure(figsize=(40, 30)) # Display image st.pyplot(wordcloud) # No axis details #st.pyplot.axis("off"); userinput = st.text_input('Tell us what are you looking in your hotel?') if not userinput: st.write("Please enter a query to get results") else: query = [str(userinput)] doc = nlp(str(userinput)) for ent in doc.ents: if ent.label_ == 'GPE': if ent.text in countries: st.write(f"Country : {ent.text}") elif ent.text in cities: st.write("city") st.write(ent.text) st.write(f"City : {ent.text}") else: print(f"Other GPE : {ent.text}") # query_embeddings = embedder.encode(queries,show_progress_bar=True) top_k = min(5, len(corpus)) query_embedding = embedder.encode(query, convert_to_tensor=True) # We use cosine-similarity and torch.topk to find the highest 5 scores cos_scores = util.pytorch_cos_sim(query_embedding, corpus_embeddings)[0] top_results = torch.topk(cos_scores, k=top_k) # st.write("\n\n======================\n\n") # st.write("Query:", query) # # doc = nlp(query) sentence_spans = list(doc.sents) ent_html = displacy.render(doc, style="ent", jupyter=False) # Display the entity visualization in the browser: st.markdown(ent_html, unsafe_allow_html=True) #displacy.render(doc, jupyter = True, style="ent") st.write("##") st.subheader("\n\n\n\n\n\nTop 5 most relevant hotels:\n\n\n\n\n\n\n") st.write("\n\n======================\n\n") for score, idx in zip(top_results[0], top_results[1]): row_dict = df.loc[df['all_review']== corpus[idx]] st.subheader(row_dict['hotel_name'].values[0]) hotel_subset = df_all.loc[df_all['hotel_name']==row_dict['hotel_name'].values[0]] st.caption("Review Summary:") st.write(row_dict['summary'].values[0]) st.caption("Relevancy: {:.4f}".format(score)) st.caption("Relevant reviews:") df_sentences_h = hotel_subset.set_index("review_body") df_sentences_h = df_sentences_h["hotel_name"].to_dict() df_sentences_list_h = list(df_sentences_h.keys()) df_sentences_list_h = [str(d) for d in tqdm(df_sentences_list_h)] # corpus_h = df_sentences_list_h corpus_embeddings_h = embedder.encode(corpus_h,show_progress_bar=True) cos_scores_h = util.pytorch_cos_sim(query_embedding, corpus_embeddings_h)[0] top_results_h = torch.topk(cos_scores_h, k=top_k) for score, idx in zip(top_results_h[0], top_results_h[1]): st.write(corpus_h[idx]) # st.table(hotel_subset.head()) # st.write("#") #wordcloud = WordCloud(width = 3000, height = 2000, random_state=1, background_color='navy', colormap='rainbow', collocations=False, stopwords = STOPWORDS, mask=mask).generate(corpus[idx]) # wordcloud = WordCloud(collocations=False,stopwords=stopwords,background_color='black',max_words=35).generate(corpus[idx]) # fig, ax = plt.subplots() # plt.imshow(wordcloud, interpolation='bilinear') # plt.axis("off") # plt.show() # st.pyplot(fig) # st.set_option('deprecation.showPyplotGlobalUse', False) if __name__ == '__main__': main() # cos_scores = util.pytorch_cos_sim(query_embedding, sentence_embeddings)[0] # top_results = torch.topk(cos_scores, k=top_k) # st.write("\n\n======================\n\n") # st.write("Query:", query) # st.write("\nTop 5 most similar sentences in corpus using sentence embedding:") # # for score, idx in zip(top_results[0], top_results[1]): # st.write("(Score: {:.4f})".format(score)) # row_dict = df.loc[df['all_review']== corpus[idx]] # st.write("paper_id: " , row_dict['hotel_name'] , "\n") # #wordcloud = WordCloud(width = 3000, height = 2000, random_state=1, background_color='navy', colormap='rainbow', collocations=False, stopwords = STOPWORDS, mask=mask).generate(corpus[idx]) # wordcloud = WordCloud(collocations=False,stopwords=stopwords,background_color='black',max_words=35).generate(corpus[idx]) # fig, ax = plt.subplots() # plt.imshow(wordcloud, interpolation='bilinear') # plt.axis("off") # plt.show() # st.pyplot(fig) # st.set_option('deprecation.showPyplotGlobalUse', False) # embedder = SentenceTransformer('all-MiniLM-L6-v2') # # corpus_embeddings = embedder.encode(corpus, convert_to_tensor=True) # Find the closest 5 sentences of the corpus for each query sentence based on cosine similarity