File size: 7,058 Bytes
04076ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75bbd56
04076ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import os
import cv2
import face_recognition
import numpy as np
from datetime import datetime
import gradio as gr
import pandas as pd
import plotly.express as px
import json

class FaceRecognitionSystem:
    def __init__(self, images_folder='known_faces'):
        self.images_folder = images_folder
        self.known_face_encodings = []
        self.known_face_names = []
        self.attendance_file = 'attendance.json'
        self.load_face_database()

    def load_face_database(self):
        self.known_face_encodings = []
        self.known_face_names = []
        os.makedirs(self.images_folder, exist_ok=True)
        for filename in os.listdir(self.images_folder):
            if filename.endswith((".jpg", ".png", ".jpeg")):
                image_path = os.path.join(self.images_folder, filename)
                try:
                    image = face_recognition.load_image_file(image_path)
                    face_locations = face_recognition.face_locations(image)
                    if face_locations:
                        face_encoding = face_recognition.face_encodings(image, face_locations)[0]
                        self.known_face_encodings.append(face_encoding)
                        self.known_face_names.append(filename.split('.')[0])
                except Exception as e:
                    print(f"Hata: {filename} dosyası yüklenirken hata oluştu - {str(e)}")

    def record_attendance(self, name):
        current_time = datetime.now()
        attendance_data = self.load_attendance_data()
        current_date = current_time.strftime("%Y-%m-%d")
        current_time_str = current_time.strftime("%H:%M:%S")
        if current_date not in attendance_data:
            attendance_data[current_date] = {}
        if name not in attendance_data[current_date]:
            attendance_data[current_date][name] = []
        attendance_data[current_date][name].append(current_time_str)
        self.save_attendance_data(attendance_data)
        return True

    def load_attendance_data(self):
        if os.path.exists(self.attendance_file):
            with open(self.attendance_file, 'r') as f:
                return json.load(f)
        return {}

    def save_attendance_data(self, data):
        with open(self.attendance_file, 'w') as f:
            json.dump(data, f, indent=4)

    def process_image(self, image):
        if image is None:
            return None, []
        rgb_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        face_locations = face_recognition.face_locations(rgb_image)
        face_encodings = face_recognition.face_encodings(rgb_image, face_locations)
        detected_names = []
        for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings):
            matches = face_recognition.compare_faces(self.known_face_encodings, face_encoding, tolerance=0.6)
            name = "Bilinmeyen"
            if True in matches:
                first_match_index = matches.index(True)
                name = self.known_face_names[first_match_index]
                self.record_attendance(name)
                detected_names.append(name)
            cv2.rectangle(image, (left, top), (right, bottom), (0, 255, 0), 2)
            cv2.rectangle(image, (left, bottom - 35), (right, bottom), (0, 255, 0), cv2.FILLED)
            cv2.putText(image, name, (left + 6, bottom - 6), cv2.FONT_HERSHEY_DUPLEX, 0.6, (255, 255, 255), 1)
        return image, detected_names

    def get_attendance_stats(self):
        attendance_data = self.load_attendance_data()
        stats = []
        for date, entries in attendance_data.items():
            for name, times in entries.items():
                stats.append({
                    'date': date,
                    'name': name,
                    'total_entries': len(times),
                    'first_entry': min(times),
                    'last_entry': max(times)
                })
        return pd.DataFrame(stats)

def create_gradio_interface():
    face_system = FaceRecognitionSystem()

    def process_uploaded_image(image):
        processed_image, detected_names = face_system.process_image(image)
        return processed_image, ", ".join(detected_names) if detected_names else "Kimse tespit edilmedi."

    def upload_face(image, name):
        if image is None or name.strip() == "":
            return "Lütfen hem resim hem de isim giriniz."
        os.makedirs(face_system.images_folder, exist_ok=True)
        file_path = os.path.join(face_system.images_folder, f"{name.strip()}.jpg")
        cv2.imwrite(file_path, image)
        face_system.load_face_database()
        return f"{name} başarıyla kaydedildi!"

    def get_attendance_report():
        df = face_system.get_attendance_stats()
        if df.empty:
            return "Henüz katılım kaydı bulunmamaktadır."
        fig = px.bar(df, x='name', y='total_entries',
                     title='Kişi Bazlı Toplam Katılım',
                     labels={'name': 'İsim', 'total_entries': 'Toplam Katılım'})
        table_html = df.to_html(classes='table table-striped', index=False)
        return f"""
        <div style='margin-bottom: 20px;'>
            {fig.to_html()}
        </div>
        <div>
            {table_html}
        </div>
        """

    with gr.Blocks(theme=gr.themes.Soft()) as interface:
        gr.Markdown("# 🎥 Yüz Tanıma ve Katılım Takip Sistemi")

        with gr.Tabs():
            with gr.Tab("Yüz Tanıma"):
                gr.Markdown("## 📷 Resim Yükle ve Tanı")
                image_input = gr.Image(type="numpy", label="Resim Yükle")
                output_image = gr.Image(label="İşlenmiş Resim")
                output_text = gr.Textbox(label="Tespit Edilen Kişiler")
                process_button = gr.Button("Resmi İşle")
                process_button.click(
                    process_uploaded_image,
                    inputs=[image_input],
                    outputs=[output_image, output_text]
                )

            with gr.Tab("Yeni Kişi Kaydı"):
                gr.Markdown("## 👤 Yeni Kişi Ekle")
                with gr.Row():
                    new_image_input = gr.Image(type="numpy", label="Kişi Fotoğrafı")
                    name_input = gr.Textbox(label="Kişi Adı")
                upload_button = gr.Button("Kaydet")
                upload_result = gr.Textbox(label="Sonuç")
                upload_button.click(
                    upload_face,
                    inputs=[new_image_input, name_input],
                    outputs=[upload_result]
                )

            with gr.Tab("Katılım Raporu"):
                gr.Markdown("## 📊 Katılım İstatistikleri")
                refresh_button = gr.Button("Raporu Yenile")
                report_html = gr.HTML()
                refresh_button.click(
                    get_attendance_report,
                    outputs=[report_html]
                )

    return interface

if __name__ == "__main__":
    interface = create_gradio_interface()
    interface.launch()